

### **WORKING PAPER**

INAPP WP n. 118

# Did Covid-19 (permanently) raise the demand for 'teleworkable' jobs?

Massimiliano Bratti Irene Brunetti Alessandro Corvasce Agata Maida Andrea Ricci

ISSN 2784-8701



**MARZO 2024** 



## Did Covid-19 (permanently) raise the demand for 'teleworkable' jobs?

#### Massimiliano Bratti

Università degli Studi di Milano, Dipartimento DEMM, Milano, Italia Global Labor Organization (GLO), Essen, Germany Institute of Labor Economics (IZA), Bonn, Germany massimiliano.bratti@unimi.it

#### **Irene Brunetti**

Istituto nazionale per l'analisi delle politiche pubbliche (INAPP), Roma, Italia Global Labor Organization (GLO), Essen, Germany i.brunetti@inapp.gov.it

#### **Alessandro Corvasce**

Università degli Studi di Milano, Dipartimento DEMM, Milano, Italia alessandro.corvasce@unimi.it

#### **Agata Maida**

Università degli Studi di Milano, Dipartimento DEMM, Milano, Italia agata.maida@unimi.it

#### **Andrea Ricci**

Istituto nazionale per l'analisi delle politiche pubbliche (INAPP), Roma, Italia an.ricci@inapp.gov.it

#### **MARZO 2024**

Il working paper è stato realizzato nell'ambito del PTA Inapp 2021-2023, con riferimento alle linee di attività afferenti alla Struttura Imprese e lavoro.

L'articolo è stato realizzato in collaborazione con Massimiliano Bratti, Alessandro Corvasce e Agata Maida che hanno beneficiato dei fondi "Grandi Sfide di Ateneo" dell'Università degli Studi di Milano.

Comments received at the III LABORatorio R. Revelli Biannual Workshop on "Health, Retirement, Mismatch and Data for Policy Evaluation" (Turin) are gratefully acknowledged.

The opinions expressed here reflect only the authors' views and not their institutions'. The Inapp is not responsible for any use that can be made of the present results. The other usual disclaimers apply.

CONTENTS: 1. Introduction. – 2. Related literature. – 3. Data; 3.1 Excess mortality; 3.2 Firms' WFH (i.e. 'teleworkable') jobs creation measure; 3.3 Descriptive Statistics. – 4. Empirical Strategy. – 5. Results; 5.1 Main results; 5.2 Effect-heterogeneity analysis; 5.3 Robustness tests. – 6. Before-after comparison. – 7. Concluding remarks. – Appendix. – References

#### INAPP - Istituto nazionale per l'analisi delle politiche pubbliche

#### **ABSTRACT**

## Did Covid-19 (permanently) raise the demand for 'teleworkable' jobs?

This study leverages detailed administrative data on firms' job flows in the spread of Covid-19 to investigate shifts in labor demand prompted by the pandemic in Italy. Namely, we investigate the effect of Covid-19 on the composition of new hires in terms of jobs suitable for 'working from home'. Our results reveal a significant increase in the 'teleworkable' hires in Local Labor Markets more severely hit by the pandemic, primarily driven by permanent contracts. An event study analysis uncovers that the effect was short-term and lasted only for two semesters after the pandemic's outbreak. Nevertheless, by involving permanent hires it will presumably have long-lasting effects on the structure of the workforce. An effect-heterogeneity analysis shows that effects were larger on the demand for female and younger workers and on the hirings of large, service firms, located in Northern Italy.

**KEYWORDS**: Covid-19, labor demand, working from home, teleworking, Italy

JEL CODES: D22, J23, J24

L'articolo analizza l'effetto dello shock pandemico sull'evoluzione della domanda di lavoro in Italia. La disponibilità di dati amministrativi permette di verificare se e in che misura la diffusione del Covid-19 ha condizionato la composizione delle nuove assunzioni legate a professioni che possono essere svolte da remoto. Le elaborazioni suggeriscono che, nei mercati locali del lavoro più duramente colpiti dalla emergenza pandemica, vi è stato un aumento significativo delle assunzioni nelle professioni cosiddette 'telelavorabili', soprattutto per quelle con contratto a tempo indeterminato. L'applicazione della metodologia event study dimostra che si tratta di un effetto di breve periodo, valido per i due semestri immediatamente successivi lo scoppio della pandemia. Si può ipotizzare che tale impatto abbia comunque generato delle modifiche strutturali nella composizione occupazionale dal momento che ad essere aumentate sono le assunzioni a tempo indeterminato. Un'analisi delle eterogeneità mostra, infine, che l'aumento delle assunzioni è stato maggiore per la componente femminile, per le coorti più giovani, per le imprese di grandi dimensioni, del settore dei servizi, e per quelle localizzate nel Nord Italia.

PAROLE CHIAVE: Covid-19, domanda di lavoro, lavoro da remoto, Italia

**CODICI JEL**: D22, J23, J24

DOI: 10.53223/InappWP\_2024-118

#### Cite as:

Bratti M., Brunetti I., Corvasce A., Maida A., Ricci A. (2024), *Did Covid-19 (permanently) raise the demand for 'teleworkable' jobs?*, Inapp Working Paper n.118, Roma, Inapp

#### 1. Introduction

The Covid-19 pandemic, with its ensuing lockdowns, wrought profound shifts in both people's lives and firms' operations. As mobility restrictions compelled firms to reimagine their work structures, the adoption of remote work (working from home, WFH hereafter) became widespread (Barrero *et al.* 2023; Bick *et al.* 2023; Bartik *et al.* 2020).

While exant research extensively explores the impact of WFH on productivity (Angelici and Profeta 2023; Morikawa 2022; Bartik *et al.* 2020; Etheridge *et al.* 2020; Feng and Savani 2020), analyzes the actual use of WFH (Aksoy *et al.* 2023), the 'teleworkability' of the current workforce (Dingel and Neiman 2020; Basso *et al.* 2020) or the characteristics of workers working from home (Alipour *et al.* 2023; Bonacini *et al.* 2021), our study takes a unique stance. Some studies have examined the *potential* re-allocative impact of Covid-19 in the labor market (Bonacini *et al.* 2021; Basso *et al.* 2020), predicting large changes, but to the best of our knowledge, evidence on the *actual* reallocative effects of the pandemic towards teleworkable jobs is still lacking. We aim to fill this gap, and our focus is on uncovering whether Covid-19 induced a lasting transformation in the occupational fabric of the economy. Specifically, we inquire if the pandemic prompted an upsurge in jobs conducive to remote work (i.e. teleworkable jobs) and whether this shift was transient or enduring.

To this end, we employ high-quality data from Italy. Information on job creation comes from an employer-employee administrative dataset provided by the Italian Ministry of Labor and Social Policies that tracks all events related to a job position (hiring, contractual transformation – e.g. from a fixed-term to an open-ended arrangement –, firing, resignation). To classify occupations according to their potential for WFH, we utilize the Sample Survey of Professions (ICP), akin to the American O\*NET, conducted by the Italian National Institute for the Evaluation of Public Policies (Inapp). The ICP survey was last administered in 2013 and involved 16,000 workers, gathering detailed information on all the 5-digit occupations existing in the Italian labor market (i.e., 811 occupational codes).

Our study relies on variations in Covid-19 spatial spread, gauged through excess mortality measures (Msemburi *et al.* 2023) at the Local Labor Market (LLM) level to identify the causal effect of Covid-19 on labor demand<sup>1</sup>. To achieve this goal, Italy represents an ideal laboratory given the high spatial heterogeneity of the Covid-19 spread, even across neighbouring regions (Berta *et al.* 2021).

Notably, we pioneer the application of a 'teleworkability' job measure to scrutinize post-pandemic firms' hiring patterns using administrative data, shedding light on potentially enduring shifts in labor demand triggered by Covid-19. Our study endeavors to address pivotal questions: (1) Did the pandemic prompt a short-term surge in firms seeking teleworkable jobs compared to non-teleworkable jobs? (2) Does this trend endure in the medium run? Section 3 elucidates a detailed definition of teleworkable jobs based on ICP.

Several reasons make studying the labor demand effects of the pandemic on teleworkable jobs important. Understanding how the pandemic influenced the demand for teleworkable jobs throws light on the adaptability of work structures in response to crises. This knowledge can guide future

<sup>&</sup>lt;sup>1</sup> In Italian, Sistemi Locali del Lavoro (SLL).

workforce planning strategies. Examining the demand for teleworkable jobs post-Covid-19 allows insights into potential shifts in required skills and qualifications. This information is crucial for educational institutions and policymakers to align training programs with evolving job requirements. Past studies suggest that the pandemic induced a persistent reallocation in the labor market (Barrero *et al.* 2023). Analyzing the demand for teleworkable jobs contributes to understanding the broader labor market dynamics post-Covid-19, aiding in informed economic policymaking. Finally, teleworkable jobs are often considered 'good jobs', offering higher pay, requiring advanced qualifications, and providing increased work autonomy. Thus, assessing the impact of Covid-19 on teleworkable job demand sheds light on potential changes in the quality of available employment opportunities.

Our analysis emphasizes that the severity of Covid-19 impacted firms' teleworkable job creation, primarily with permanent contracts. The share of WFH jobs created with open-ended contracts after Covid-19 rose on average by 0.2 percentage points (1% measured at the pre-pandemic baseline) for a one-SD increase in excess mortality at the LLM level. When we allow for the effects to be year-specific, using an event-study analysis, we document that the average post-Covid effect in reality hides substantial heterogeneity over time. Indeed, although the effect was short-term and lasted only for two semesters after the pandemic's outbreak, in these semesters the increase amounted to up to 4% on open-ended contracts. The event-study analysis also confirms that the observed effects are not attributable to an ongoing trend started before the pandemic. This attenuates concerns that LLMs that were more heavily hit by the pandemic - typically LLMs in Northern Italy - were also those experiencing higher WFH job creation before the health emergency and lends support to the parallel trend assumption. Our results are robust to a battery of robustness checks, including using a continuous measure of WFH job creation, changes in the sample trimming criteria used in the analysis and the inclusion of broad occupational indicators to check whether the effects are driven by certain occupations. A heterogeneity analysis underscores that effects were higher: on female and younger workers; on workers in Northern and partly in Southern Italy compared to the Center of the country; in the service sector; and for larger firms. Finally, a before-after analysis, which compares the dynamics in WFH job creation before vs. after the pandemic without necessarily relating it to the local intensity of Covid-19's spread, gives qualitatively consistent results, albeit larger estimates.

The remainder of the paper is structured as follows. In section 2, we report a short review of some related literature. In section 3, we describe the data. Section 4 presents the empirical strategy. Section 5 includes the main estimation results, some robustness tests and an effect-heterogeneity analysis. The results of a before-after analysis are reported in section 6. Section 7 draws conclusions.

#### 2. Related literature

The outbreak of the Coronavirus pandemic in 2020 had an unprecedented impact on the global labor market. The widespread adoption of working from home across a vast range of industries and sectors has been described as the largest change to the U.S. economy since World War II (Bloom 2023). As a result of this abrupt change, there has been a surge in the literature examining the economic consequences of Covid-19. Without the pretension of being exhaustive, this section aims to provide

an overview of the key findings and insights from recent research on the determinants and diffusion of WFH, as well as its implications and effects on the labor market<sup>2</sup>.

Some studies focus on estimating the share and types of work that can be carried out from home or remotely and their diffusion. Dingel and Neiman (2020) provide the first estimates for the U.S., while Basso et al. (2020) and Barbieri et al. (2022) present similar analyses for Italy. These papers use nationally representative survey data on occupational characteristics to identify suitable occupations for remote work. Dingel and Neiman (2020) use the rich information on worker activities and occupational characteristics in the O\*NET database to build an index of propensity to work from home. Their results suggest that nearly 37% of jobs in the U.S. can be performed entirely from home. The authors also note significant variations across cities and industries, as well as the fact that remote jobs tend to be more highly paid than non-remote jobs. Barbieri et al. (2022) use highly detailed information on the attributes of fine-grained occupations collected from ICP – also used in this paper - and estimate that the share of Italian employees that could potentially work remotely is around 33% in the total Italian economy. Buia et al. (2023) analyze the European SHARE survey and focus on individuals who worked continuously since the start of the pandemic; they found that around 22% of men and 30% of women were working remotely between 2020 and 2021. However, Crescenzi et al. (2022) argue that relying solely on survey data to estimate the potential for remote work may overestimate the share of jobs that are carried out remotely. They assess the actual number of jobs performed at home during the pandemic using unique administrative data on the universe of Italian workers from the National Institute for Insurance against Accidents at Work (Inail). Their results suggest that only 12% of the workforce was able to work remotely. Another area in which the literature has focused is how the spread of WFH triggered labor market adjustments. As claimed by various scholars, WFH is not a temporary phenomenon but will lead to structural changes. Basso et al. (2020), building on the WFH indicator described earlier, analyze the need for worker relocation and for major restructuring for firms that offered non-WFH jobs. The need to respond to a decrease in demand for goods and services that pose a higher epidemiological risk, coupled with the necessity of restructuring the workforce more flexibly, could cause a structural transformation, with a permanent shrinkage of certain occupations and a growth in labor demand in other jobs or sectors. According to Basso et al. (2020), it is very likely that training in digital skills will be required to ease this reallocation. Digitalization will be widespread beyond occupations where WFH is already in place; it will also be important among those that are unsafe under current technologies, as there will be a need to have less physical proximity to avoid contagion risks and improve competitiveness. Barrero et al. (2021) estimate the short-term impact of the pandemic on workers' reallocation and conclude that this shock caused three new hires for every ten layoffs. The authors predict that much of this impact will persist, with 42% of recent layoffs becoming permanent job losses. Barrero et al. (2021) also determined that almost 22% of full workdays will be supplied from home after the pandemic ends, which is about four times the pre-pandemic WFH share. This increase is estimated to be beneficial for both workers (as it saves commuting time and reduces spending) and firms (as they benefit from increased productivity and re-optimized working arrangements).

<sup>&</sup>lt;sup>2</sup> Interested readers can refer to Lee (2023) for a recent literature review.

One of the significant concerns for employers when considering the implementation of WFH arrangements is indeed productivity. Bloom et al. (2015) and Angelici and Profeta (2023) conducted pioneering randomized control trials to evaluate the impact of WFH. Bloom et al. (2015) reports evidence from a field experiment with employees from a Chinese travel agency finding that WFH led to a 13% increase in productivity, which they attributed to a quieter working environment and reduced time spent on commuting. Angelici and Profeta (2023) finds causal evidence that flexibility in time and place of work ("smart working") increases the objective productivity of workers and improves their well-being and work-life balance. Bartik et al. (2020) surveys large and small American firms to analyze the prevalence and productivity of remote work. The authors find large heterogeneity across industries, as WFH is much more common in industries with better-educated and better-paid workers, thus highlighting the challenge of moving many industries to this new practice. Again, their results pinpoint that there was less productivity loss from remote working in better-educated and higherpaid industries. Aksoy et al. (2023) field a unique global survey that yields individual-level data on demographics, WFH levels, employer plans and worker desires and perceptions related to WFH, in order to depict the effect of the pandemic on WFH adoption and dynamics. They identify a positive effect on productivity that corroborates the diffusion of WFH and its widespread adoption even after emergency times. Moreover, this is particularly true for women and more educated workers. Other studies report instead negative impacts on productivity. A study by DeFilippis et al. (2020) analyzes the effects of WFH during the Covid-19 pandemic in 16 large metropolitan areas in North America, Europe and the Middle East. The authors document that the average workday length increased by 48.5 minutes, but this increase in working hours did not necessarily translate into higher worker productivity. A study for Japan (Morikawa 2022) reveals that the mean productivity of WFH relative to working at the usual workplace was about 60%-70%. Productivity was lower for firms and employees who had only recently started working from home due to the Covid-19 pandemic. Focusing on the UK Labor market Bloom et al. (2023) document that total factor productivity (TFP) fell by up to 5% during 2020-21 in the UK, but hourly labor productivity was positively affected. The authors report significant heterogeneity across firms and sectors, with the largest negative impacts on sectors needing extensive in-person activity. These results resemble those of Etheridge et al. (2020), which documented that in the UK workers at home reported being approximately as productive as before the pandemic, on average. However, productivity varied substantially across socioeconomic groups, industries and occupations.

Changes in the way firms organize work and WFH adoption are likely to have uneven effects on workers. A study for Italy shows how a permanent surge in WFH may exacerbate income inequality. Bonacini *et al.* (2021) document that a permanent adoption of WFH raises average labor incomes, but benefits mainly high-educated and high-paid employees, and employees in provinces more heavily affected by Covid-19. Similar evidence exists for other countries. A study for the U.S. (Mongey *et al.* 2021) reports that workers in low WFH jobs were more economically vulnerable: they had lower education, lower income, fewer liquid assets and were more likely to be renters. Alipour *et al.* (2023) show that WFH jobs in Germany are concentrated in the digitalized industries and involve cognitive tasks. So WFH, like other important changes in the labor market, is likely to be skill-biased and increase polarization.

In conclusion, the effects of WFH on the labor market are multifaceted and depend on various factors such as job type, industry, and individual circumstances. While most research generally indicates

positive effects on productivity – with some exceptions –, worker satisfaction, and labor market participation, concerns remain regarding potential impacts on income inequality. Further research is needed to understand the long-term implications of WFH policies and how they can be optimized to promote better and innovative working arrangements that could benefit both workers and firms.

#### 3. Data

This study utilizes a unique dataset obtained by linking an administrative archive on job flows to a survey on occupation characteristics to provide insights into potential changes in labor demand triggered by the Coronavirus pandemic. We rely on data from the archive of the Compulsory Communications System (*Sistema delle Comunicazioni Obbligatorie*, COB hereafter) provided by the Ministry of Labor and Social Policies, which records from 2009 information on each job relationship that started, changed or ended for firing, dismissal, retirement, or transformation (e.g., from a fixed-term to an open-ended arrangement) for all individuals working in Italy as employees. Moreover, it includes occupational (5-digit) and educational information. Using the detailed information provided by COB, we can examine labor market dynamics comprehensively, and analyse the creation of teleworkable jobs across different dimensions of the employer-employee relationships.

To classify occupations according to their potential for remote work, we follow the methodology proposed by Barbieri *et al.* (2022) and utilize the *Indagine Campionaria delle Professioni* (ICP) conducted by Inapp. The ICP survey was last run in 2013 and it involves 16,000 workers recording detailed information on all the 5-digit occupations (i.e., 811 occupational codes) in the Italian market. The ICP is the Italian equivalent of the American O\*NET. A relevant aspect of ICP is that job task variables are specific to the Italian economy allowing for the definition of the structure of the labor market and the industrial relations characterizing the Italian economy. Thus, the use of ICP avoids potential methodological problems which may arise when information related to the American occupational structure (i.e., contained in the US O\*Net repertoire) is matched with labor market data referring to European countries.

By utilizing ICP, we can identify occupations that are more likely to adopt WFH arrangements. Following Dingel and Neiman (2020), we compute the teleworkability of each profession at the 3-digit level by averaging the responses to seven specific questions: (i) importance of physical activities (reversely); (ii) importance of working with computers; (iii) importance of maneuvering vehicles or equipment (reversely); (iv) requirement of face-to-face interactions (reversely); (v) dealing with external customers (reversely); (vi) physical proximity (reversely); (vii) time spent standing (reversely). This study focuses on the period around the pandemic, from the first quarter of 2017 to the four quarter of 2021. As for sample selection, we consider all contractual arrangements activated to employees aged between 17 and 64, we excluded the armed forces, and, since our main focus is to analyze relevant shifts in labor demand, we removed very short contracts that is all contracts with a duration below 30 days (10th percentile). Indeed, they are not so informative regarding substantial transformations of the workforce. After imposing these criteria, our sample is composed by 5,998,993 observations over the period 2017-2021. Adopting this time span allows us to carry out the analysis on a symmetric window around the pandemic outbreak.

#### 3.1 Excess mortality

To assess the differential impact of the Covid-19 pandemic across different areas of Italy, this study incorporates mortality data from the Italian National Institute of Statistics (Istat)<sup>3</sup>. Excess deaths were considered a crucial measure to monitor the pandemic's impact, both nationally and locally (Buonanno *et al.* 2020; Msemburi *et al.* 2023). The mortality data provide the count of daily deaths for each municipality in Italy by individual municipality of residence. By comparing the average mortality during the March-May period in the years 2015-2019 with the mortality in the same quarter in 2020, we calculate an excess mortality rate at the LLM level. LLMs are sub-regional geographical areas, comparable to the U.S. commuting zones, where the bulk of the labor force lives and works, and where establishments can find the main part of the labor force necessary to fill their vacancies. Excess mortality measured at the LLM level captures the differential firms' exposure to the pandemic shock depending on the LLM in which they were located.

Specifically, the excess mortality ratio is computed as:

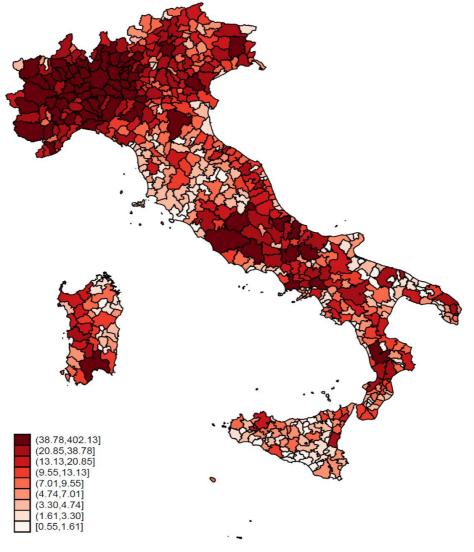
$$Exc_l = \frac{M_{l,2020} - \overline{M}_{l,2015-2019}}{\overline{M}_{l,2015-2019}} * 100$$
 (1)

where  $M_{l,2020}$  is the number of deaths over the March-May 2020 period and  $\overline{M}_{l,2015-2020}$  represents the average number of annual deaths in the period 2015-2029, in each l Local Labor Market<sup>4</sup>. For ease of interpretation, we normalize the variable to have zero mean and unit standard deviation, so that the coefficients can be interpreted as the increase in job creation determined by a one-SD increase in excess mortality.

Figure 1 details the distribution across the Italian LLMs of the excess mortality, with darker shades of red representing higher levels of mortality. In line with the literature, it can be noticed that there was a strong geographical pattern, with the highest level of estimated excess mortality occurring in just two Northern regions (Lombardy and Piedmont) and other Northern regions such as Veneto, Trentino-Alto Adige, Friuli-Venezia Giulia, and Emilia-Romagna exhibiting more pronounced variability. Central Italy and the Southern and Insular LLMs also display noteworthy differences in excess mortality. This geographic heterogeneity in excess mortality provides a rich context for detailed analytical investigation. Differences are partly linked to the implementation of specific policies by regional administrations such as lockdowns, mobility restrictions, Covid-19 testing, which often generated noticeable differences even between municipalities belonging to the same region (Gibertoni *et al.* 2021), but also to exogenous factors related to specific events, such as, for instance, football matches (Alfano 2022).

<sup>&</sup>lt;sup>3</sup> See <<u>https://bitly.ws/3dQAA</u>>.

<sup>&</sup>lt;sup>4</sup> This is the so-called P-score method. In particular, imagine that the average number of deaths between 2015 and 2019 is 100, which is also the one that would be expected for 2020 in the absence of Covid-19, while the actual number of deaths in 2020 is 140, the P-score is 40%. As stressed by Msemburi *et al.* (2023) the P-score implicitly considers both the population size and the age structure.



**Figure 1.** Excess Mortality by Local Labor Market (LLM)

Note: this map displays the excess mortality across all the Italian LLMs, with darker areas representing higher levels of excess mortality. See Eq. (1) for the exact definition of excess mortality.

Source: Author's elaborations on Istat mortality data

#### 3.2 Firms' WFH (i.e. teleworkable) jobs creation measure

In order to evaluate the response of the Italian labor market to the spreading of Covid-19 and to detect whether there has been a shift in demand towards occupations more prone to WFH, we first build an indicator that measures the share of WFH occupations within each firm and according to the type of contract (open-ended, fixed-term, other residuals types of contracts). The inclusion of the type of contract in the analysis produces a major advantage. First, since at the time of the Covid-19 outbreak firms were uncertain about how long the pandemic was going to last, we might expect a differential effect on temporary and permanent jobs, which can be investigated using interaction terms with the contract type. Second, it allows us to include contract fixed effects (FE) in our estimation and hence to control for intrinsic differences between permanent and temporary hirings. Following the approach proposed by Autor and Dorn (2013), the share of highly teleworkable jobs creation is defined as follows:

WFH Share<sub>$$itc = 
$$\left[\sum_{j} N_{ijct} * 1[ICP Index_{j} > ICP^{66pct}]\right] / N_{it}$$
 (2)$$</sub>

where  $N_{ijct}$  is the number of hirings made by firm i, for occupation j, at time t, with the type of contract c; ICP Index<sub>i</sub> is the index built from the ICP survey that measures how much occupation j is prone to WFH; and 1[.] is an indicator function equal to one for hirings in an occupation with an ICP value in the top 33% of the ICP distribution, and 0 otherwise.  $N_{it}$  is the total number of hirings made by firm i in time t. Figure 2 depicts the difference in the WFH share before and after the pandemic aggregated at the LLM level; darker areas represent the steeper increase.

The firm-level data provided by COB include information about firm location at the municipality level, which was used to build the LLM information to match data on job flows with LLMs' excess mortality<sup>5</sup>.

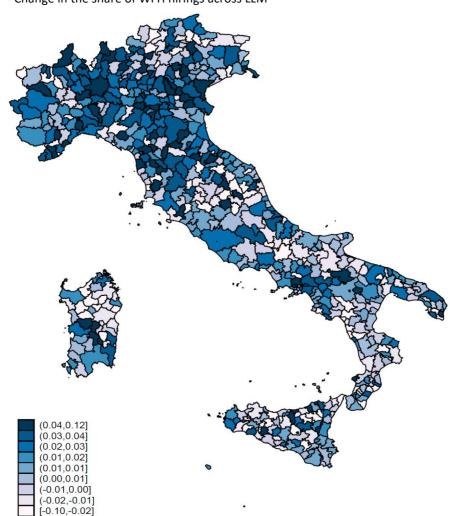


Figure 2. Change in the share of WFH hirings across LLM

Note: this map displays the difference before and after the Covid-19 outbreak of the dependent variable WFH share of hires, defined in Eq. (3), across all the Italian LLMs, with darker areas representing higher increase. Source: Author's elaborations on COB-ICP dataset 2017-2021

<sup>&</sup>lt;sup>5</sup> The composition of LLMs in terms of municipalities is provided by Istat.

#### 3.3 Descriptive Statistics

Table 1 reports the composition of our sample according to different characteristics: the type of contracts (permanent, temporary and other) created, the macro geographical area of the job position (North, Center, and South and Islands), gender, and age class of the hired employee. The top panel suggests that the highest share of hires (68.8%) are temporary contracts, while permanent contracts are only 20%. The residual percentage is represented by hirings with other typologiees of contracts (i.e. apprenticeship, on call, agency, para-subordinate contracts). The second panel shows that almost half of contracts have been created in Northern Italy (47.3%). The last two panels depict worker characteristics: the job creation slightly favors male workers (54.2%). Workers older than 55 constitute a low share of the total (10.8%) while there is a balanced distribution between the two remaining age classes of under-35 (46%) and 35-54 years old workers (43.1%).

**Table 1.** COB Dataset composition

| Characteristic     | Frequency | Percent |
|--------------------|-----------|---------|
| Permanent Contract | 1,179,755 | 19.52   |
| Temporary Contract | 4,128,177 | 68.81   |
| Other Contract     | 700,060   | 11.67   |
| Female             | 2,744,176 | 45.74   |
| Male               | 3,254,817 | 54.26   |
| Under 35 y.o.      | 2,764,718 | 47.38   |
| 35-54 y.o.         | 2,586,390 | 43.11   |
| 55+ y.o.           | 647,884   | 10.8    |
| North              | 2,842,556 | 47.38   |
| Center             | 1,179,794 | 19.67   |
| South              | 1,976,643 | 32.95   |
| Total              | 5,998,993 | 100     |

Note: the other category of contracts includes: para-subordinate, agency, on call, and apprenticeship contracts. All observations are weighted.

Source: Author's elaborations on COB-ICP dataset 2017-2021

Table 2 presents a detailed breakdown of our dependent variable, the WFH hiring shares, including the mean, standard deviation, and the 25th, 75th, and 99th percentiles for the total sample and segmented by contract types and worker demographics. It reveals that, on average, 19% of new hires occur in occupations that can be performed remotely. Distinct variations in share of hires in WFH jobs are noted across employment categories. Specifically, permanent and other forms of contracts show a higher average WFH share (nearly 30%) compared to temporary roles, underscoring the role of job stability in those occupations which have the advantage that they can be carried out from home. The data also highlight a gender gap in WFH hirings, with females having a notably higher average share, almost twice that of males, suggesting potential labor market segmentation or disparate access to WFH opportunities. Age-wise, there is a slight variation in WFH shares, with the under-35 and the 35-55 group groups exhibiting a marginally higher average (around 15%), than the over-55 group at 11%.

Furthermore, regional differences are pronounced, with the North and Central regions showing higher shares of WFH job creation (about 20%) compared to the Southern region's 13%. Finally, the last row of table 2 highlights that excess mortality is characterized by a huge geographical variability: the 75th percentile, for instance, is three times as large as the 25th percentile, corresponding to excess mortality of 3.5% and 16%, respectively.

Table 2. Descriptive statistics of the share of WFH hirings

|                        | (Mean) | (s.d.) | (25th) | (75th) | (95th) | Obs.             |
|------------------------|--------|--------|--------|--------|--------|------------------|
| WFH Share all          | .188   | .373   | 0      | 0      | 1      | 2,972,342        |
| WFH Share perm         | .309   | .445   | 0      | 1      | 1      | 775,521          |
| WFH Share temp         | .112   | .298   | 0      | 0      | 1      | 1,786,772        |
| WFH Share other        | .305   | .434   | 0      | 1      | 1      | 365,049          |
| WFH Share female       | .219   | .390   | 0      | .25    | 1      | 1,484,584        |
| WFH Share male         | .124   | .306   | 0      | 0      | 1      | 1,935,750        |
| WFH Share under 35     | .163   | .343   | 0      | 0      | 1      | 1,628,460        |
| WFH Share 35-55        | .158   | .343   | 0      | 0      | 1      | 1,551,672        |
| WFH Share over 55      | .114   | .301   | 0      | 0      | 1      | 484,028          |
| WFH Share North        | .203   | .378   | 0      | .142   | 1      | 1,477,915        |
| WFH Share Center       | .201   | .380   | 0      | .066   | 1      | 642,148          |
| WFH Share South        | .135   | .326   | 0      | 0      | 1      | 1,010,478        |
| Excess Mortality Ratio | 13.44  | 18.05  | 3.5    | 16.0   | 45.3   | 610 <sup>a</sup> |

Note: the table reports the mean, the standard deviation and 25th, 75th and 95th percentiles of the dependent variable WFH Share for the whole sample and for different type of contracts and workers characteristics. <sup>a</sup>number of LLM, the geographic unit at which we calculate the excess mortality measure.

Source: Author's elaborations on COB-ICP dataset 2017-2021

#### 4. **Empirical Strategy**

To analyze whether the pandemic of Covid-19 caused an increase in jobs that can be done from home, we estimate the following model:

WFH Share<sub>itc</sub> = 
$$\alpha + \beta (Exc_l * post_t) + D_i + D_c + D_l + D_t + D_y * D_t + \epsilon_{itc}$$
 (3)

where WFH Share itc, our main dependent variable, measures the share of WFH hirings, i, c, and lrepresents firm, contract, and LLM subscripts respectively. Period t is defined as a combination of semester and year (y);  $Exc_l$  is the firm's LLM l's excess mortality due to Covid-19 in the March-May quarter of 2020 (compared to the average of the same quarter in 2015-2019), and is interacted with  $post_t$ , an indicator that identifies the post-Covid-19 periods, as in a standard Difference-in-Differences (DID) framework; this indicator allows us to identify the variable shocks that hit LLMs due to differential pandemic intensity. The coefficient of interest is  $\beta$ , which captures our treatment effect of interest; the estimated coefficient pins down firms' labor market responses to the severity of the pandemic in terms of WFH job creation.

For ease of interpretation, in our analysis, we normalize the excess mortality rate in standard deviations (SD), so we can state that a one-SD increase in excess mortality is associated with a  $\beta$  increase in the share of teleworkable-jobs hirings. Thus,  $\beta*100$  provides an increase in percentage points.  $D_i$  are firm,  $D_c$  contract type,  $D_l$  LLM,  $D_t$  period (semester-time dyad), and  $D_y*D_t$  sector-bytime FEs<sup>6</sup>.  $\alpha$  and  $\epsilon$  are the canonical regression's constant and error term.

To inspect the parallel trend assumption, the key assumption for identification in our analysis, we have also estimated an event study specification:

WFH Share<sub>itc</sub> = 
$$\alpha + \sum_{t} \beta_t (Exc_l * D_t) + D_i + D_c + D_l + D_t + D_y * D_t + \epsilon_{itc}$$
. (4)

in which the effect of excess mortality is allowed to vary by period (by interacting it with the period indicator  $D_t$ ). The reference period for the event-study analysis is the second semester of 2019, i.e. the period just before the outbreak of the pandemic, which serves as a baseline<sup>7</sup>.

By comparing the post- with the pre-pandemic period, our study investigates the changes in the WFH composition of hirings associated with the local intensity of the pandemic and their dynamics.

#### 5. Results

#### 5.1 Main results

The DID-like estimates of Eq. (3) presented in table 38 show that there was a significant increase in WFH hirings in the labor market related to the intensity of the pandemic. A one-SD larger excess mortality in the LLM produced a bit less than a 0.1 percentage point (pp, hereafter) increase in WFH job creation with any contract type, as reported in the first column. The increase is largely due to permanent contracts, with a rise of 0.2 pp in teleworkable jobs induced by a one-SD larger excess mortality, while the remaining contract types did not register any statistically significant increase. In percentage terms, when dividing the estimated coefficients by the pre-Covid-19 mean share of teleworkable jobs, which stands at 18.2%, the effects on both total contracts and open-ended contracts amount to a 0.5% and 1% increase, respectively.

<sup>&</sup>lt;sup>6</sup> LLM fixed effects are generally absorbed by firm FEs, except for firms having multiple branches spanning different LLMs.

 $<sup>^{7}</sup>$  We trimmed the sample. Specifically, observations with a total number of hirings ( $N_{it}$ ) exceeding 8 are excluded from the estimation. This criterion removes observations that fall in the 95th percentile of the sample, which may have a disproportionate impact on the results.

<sup>&</sup>lt;sup>8</sup> Properly speaking, it is not a DiD since there is no control group. All firms are affected by excess mortality, albeit with different intensities. So the design is more like a 'Fuzzy DID' (De Chaisemartin and d'Haultfoeuille 2018).

| Table 3. | Descriptive statistics of the share of WFH hirings |
|----------|----------------------------------------------------|
|----------|----------------------------------------------------|

| Dependent Variable:         | WFH Share by contract type |                    |                   |                 |  |
|-----------------------------|----------------------------|--------------------|-------------------|-----------------|--|
|                             | All                        | Open End           | Fixed End         | Other           |  |
|                             | (1)                        | (2)                | (3)               | (4)             |  |
| Exc. Mortality * Post Covid | .0009***<br>(.0001)        | .002***<br>(.0004) | .00008<br>(.0002) | .001<br>(.0006) |  |
| Firm FE                     | Υ                          | Υ                  | Υ                 | Υ               |  |
| Contract FE                 | Υ                          | Υ                  | Υ                 | Υ               |  |
| Period FE                   | Υ                          | Υ                  | Υ                 | Υ               |  |
| LLM FE                      | Υ                          | Υ                  | Υ                 | Υ               |  |
| Sector-period FE            | Υ                          | Υ                  | Υ                 | Υ               |  |

Note: this table reports DiD estimations of Eq. (3). The dependent variable is the WFH Share for different categories of contracts. All kind of FE and trends are included. Robust standard errors, clustered at the LLM level in parenthesis. \*\*\* p<0.01, \*\* p<0.05, \* p<0.1. Source: Author's elaborations on COB-ICP dataset 2017-2021

Key for our identification strategy is that the excess mortality is not simply capturing differential pretrends in WFH job creation across LLMs. This may happen, for instance, if teleworkable job creation was already more diffused in Northern Italy before the pandemic, and northern Italy's LLMs were also the ones more intensively affected by Covid-19. Although the latter is true on average – at least for the Northern Italian regions of Lombardy and Piedmont – we have already discussed the important heterogeneity across municipalities observed even within the same macro-area (North, Center, South and Islands). To carry out a more formal test, we estimated an event-study DiD model, in which excess mortality is interacted with all period dummies (Eq. (4)). In case of no differential pre-trends, the interactions before the pandemic outbreak should not be statistically different from zero. Figure 3figure 5 show the event-study estimates for different types of contracts: all, permanent, and temporary, respectively<sup>9</sup>. The absence of a differential pre-trend in the estimated coefficients indicates that there were no systematic differences in the WFH composition of hirings before the pandemic between LLMs that were highly vs. lowly affected by Covid-19. This finding strengthens the credibility of our research design, suggesting that any observed change in WFH patterns can be ascribed to the intensity of the pandemic rather than to pre-existing trends.

The first semester of 2020, marked as the 7th period, saw the outbreak of the Coronavirus, leading to a significant and positive shift in the proportion of WFH hirings, as evidenced by the event study. This shift was particularly pronounced in the first two semesters following the onset of Covid-19, with observed increases in WFH hirings across all contract types by 0.3 pp and 0.2 pp, in the first and second semester, respectively. The event study's coefficients reveal a diverse range of dynamics in these effects, indicating considerable variability. When specifically examining permanent contracts, the data show even more substantial increases in the post-Covid periods: 0.7 pp and 0.4 pp in the first and second semesters, respectively. These figures significantly surpass the average post-Covid effect of 0.2 pp obtained from the baseline analyses, translating into notable increases ranging up to 4%. Such findings underscore the proactive measures firms took in response to the pandemic's challenges, notably by adjusting their workforce composition to favor positions amenable to remote work. This

<sup>&</sup>lt;sup>9</sup> In the appendix, we also show in figure A.1 the dynamics pooling permanent and temporary jobs and excluding the residual category.

strategic shift towards more WFH occupations likely stemmed from the immediate need to adapt work practices and environments to meet the pandemic's demands, including adhering to social distancing guidelines and overcoming lockdown restrictions. It reflects a broader trend of organizational flexibility and the prioritization of employee safety and operational continuity in the face of unprecedented organizational challenges.

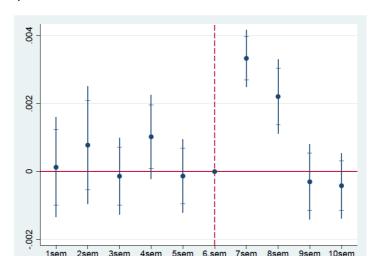


Figure 3. Event Study Estimation WFH - All Contracts

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem). Source: Author's elaborations on COB-ICP dataset 2017-2021

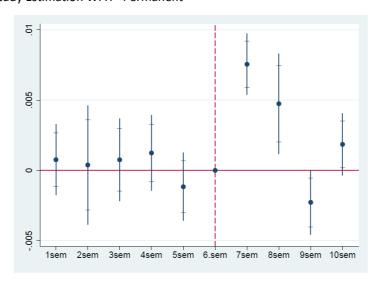


Figure 4. Event Study Estimation WFH - Permanent

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem).

Source: Author's elaborations on COB-ICP dataset 2017-2021

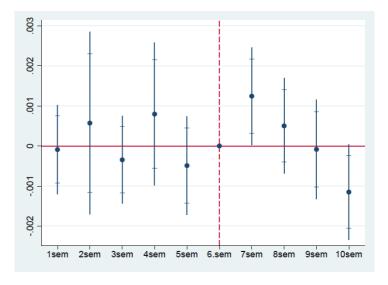


Figure 5. **Event Study Estimation WFH - Temporary** 

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem). Source: Author's elaborations on COB-ICP dataset 2017-2021

Yet, the effect of the pandemic-induced shift towards WFH hirings appears to be only transitory. According to the estimation results, this shift lasted for two semesters. On the one hand, this indicates that firms' response to the pandemic in terms of increasing WFH capacity was a temporary measure, potentially reflecting the evolving nature of the crisis and the dynamic nature of work arrangements during this period. On the other hand, the prevalent permanent nature of the contracts involving WFH workers in the two affected periods suggests that even short-time decisions might have a long-lasting effect on the composition of the workforce.

Overall, these findings highlight the adaptability of firms in the face of a significant disruption like the Covid-19 pandemic. The positive and significant shift towards WFH hirings suggests that at least in the first phase of the pandemic firms were proactive in adjusting their workforce composition to address the challenges imposed by new ways of organizing the workforce.

#### 5.2 Effect-heterogeneity analysis

#### **Worker characteristics**

To harness the detailed information within the COB dataset and disentangle various dynamics across workers, we conducted several heterogeneity analyses based on different worker characteristics. To this aim, we estimated Eq. (3) with a slightly modified dependent variable: WFH Share<sub>iltca</sub>, where the subscript g represents worker gender or age, alternatively. Consequently, we constructed our dependent variable with a more refined level of aggregation. Descriptive statistics for these variables are provided in table 2.

In figure A.2 and figure A.3 in appendix, we present event study estimates by gender. We observe a positive and statistically significant increase for male workers, persisting for two semesters following the pandemic outbreak and amounting to 0.3 and 0.2 pp but then significantly decreasing. When examining the results for female workers, we find a similar increase in magnitude and persistence;

however, the parallel trend assumption is violated. It is possible that the national law on *lavoro agile* (i.e. 'agile work', another definition of 'telework' used in Italy)<sup>10</sup>, had a distinct impact on female workers, given their propensity to benefit from WFH (Angelici and Profeta 2023; Aksoy *et al.* 2023). We estimated our model for women in different age bins in order to shed light on the possible causes of the observed pre-trends. Results, reported in figure A.4-figure A.6, highlight that the presence of significant differences before the Covid-19 outbreaks in the dynamics of WFH hires is mainly due to young women, those who also show the strongest increase: around 0.4 pp. In the light of the extant literature, this result can be ascribed to a greater desire for work-home balance originated by those women who are in the age of having small children. This is true even before the pandemic and could have led to a greater influx of female workers towards professions more prone to WFH.

In figure A.7 in appendix, we analyze young workers under 35, where the increase of 0.2 pp is significant and lasting for almost three periods. This aligns well with evidence indicating that younger workers are more inclined to WFH and possess better skills to adopt the IT tools necessary for effectively doing it. figure A.8 presents the results for workers aged 35-55. Similarly, we observe an increase of 0.2 pp that appears to be shorter term, lasting for two periods only and then becoming negative but non-significant. Finally, figure A.9 reports the results for workers aged over 55 years, indicating almost no effect. Thus, expectedly, older workers seem to be less affected by the transition to WFH. Moreover, we do not observe any violation of the parallel trend assumption for any age class.

#### Firm characteristics

Shifting now our attention to firm characteristics, we considered effect-heterogeneity by the different geographic macro-regions where firms were located. Figure A.10 in appendix depicts the results for the North, and we can observe a significant increase of 0.3 pp, that lasts at least 2 semesters after the pandemic; these results are in line with the hypothesis that WFH professions are more demanded and common in the North, where there is the greater number of technological and innovative firms. In figure A.11, on the other hand we can notice how in the Center there is just change in the directions of the dynamic of hirings, that is not significant. In figure A.12 however, we can observe a significant increase of 0.7 pp only during the second semester of 2020. These results seem to suggest that in the South there has been a catching-up dynamic after the pandemic, with a greater influx of new workers in those professions that can better fit the new working arrangements.

Then, we classified companies by their predominant economic activity. We have followed the Istat definitions based on 2-digit ATECO code and distinguished between manufacturing and service-oriented<sup>11</sup>. Figure A.13 and figure A.14 depict the results of this analysis; it is clear that the increase in the share of WFH professions is mainly due to service firms, which shows an increase of around 0.2 pp. Manufacturing firms on the contrary show no significant increase; however it should be noticed that there has been a positive shift in the trend after the pandemic outbreak also for those firms. These results are in line with the hypothesis that WFH is more easily put implemented among service workers, who are less required to physically interact with machinery, tools and materials.

<sup>&</sup>lt;sup>10</sup> Legge nazionale sul lavoro agile, art. 18, Legge 22 maggio 2017, n. 81.

<sup>&</sup>lt;sup>11</sup> We have excluded minings, utilities and buildings from manufacturing.

Moreover, we also took into account also heterogeneity by firm size based on the number of employees. We have categorized firms into three classes: small (less than 50 employees), medium (between 50 and 250 employees) and large (over 250 employees). In order to get information on the number of employees we had to match our COB dataset to ASIA, the Italian statistical register of active businesses, but this came at a cost. The caveat is that, due to our data availability, we have been able to get the match only for corporate firms with at least one employee; thus, the sample for this heterogeneity analysis is almost half of our baseline sample. We present the results in figure A.15, figure A.16 and figure A.17. We can notice how small and medium firms show a small increase for almost a couple of semesters after the pandemic, and then the effect fades away. The effect is widely driven by large firms, whose increment is lagged by one period but spikes up to over 1.5 pp. Large firms appear to be those more fit to deal with the new working arrangements even in non emergency times.

#### 5.3 Robustness tests

We conducted a robustness check to validate the soundness of our results. We adopted as dependent variable an alternative measure of WFH, which is continuous and avoids imposing a specific cutoff to classify workers into high and low teleworkable jobs, built as:

WFH Index<sub>itc</sub> = 
$$\left[\sum_{j} N_{ijct} * ICP Index_{j}\right] / N_{it}.$$
 (5)

For ease of interpretation, WFH  $Index_{itc}$  is standardized to have zero mean and unit standard deviation.

WFH  $Index_{itc}$  can be interpreted as the average teleworkability of hires done by firm i at time t with the contract type c. We estimated both our DiD and the event study specifications again, and the results of the latter, shown in figure A.18 on all contract types, are consistent with those of our baseline analysis in figure 312. This provides evidence in favor of our claim that after the pandemic outbreak, there was a positive shift in the demand for jobs more adaptable to WFH.

Furthermore, we checked if the results could be driven by between-variation across given occupations. To test this, we estimated our model with WFH  $Share_{iltcg}$ , where g stands for the macrooccupation category<sup>13</sup>. This specification allows us to take into account specific time-invariant characteristics of each occupation, as long as they are common to 1-digit occupational groups. The results of this estimation exercise (presented in figure A.19) closely resemble those of our main analysis, thus corroborating our findings and pointing toward an overall increase in the demand for teleworkable occupations that is not driven by between-macro-occupation variation.

<sup>&</sup>lt;sup>12</sup> In addition, we have also replicated all the additional heterogeneity-effect estimations with this continuous measure and results, available on requests, always hold.

<sup>&</sup>lt;sup>13</sup> They correspond to ICP 1-digit categories: Legislators, Entrepreneurs, and High Management [1] Intellectual, Scientific, and Highly Specialized Professions [2] Technical Professions [3] Executive Professions in Office Work [4] Qualified Professions in Commercial Activities and Services [5] Craftsmen, Specialized Workers, and Farmers Plant Operators, Fixed and Mobile Machinery Workers, and Vehicle Drivers Unqualified Professions Armed Forces.

On top of that, we tested whether our results could be driven by the sample selection and sample trimming criteria that we applied. In order to verify the robustness of the main findings we estimated Eq. (4) with two different sample selection rules. On the one hand, we included even shorter contracts that is to say that we excluded from the sample only contracts below 13 days (compared to 30 days used in our baseline estimates); on the other hand, we estimated again our model removing from the sample observations with a total number of hirings exceeding 23 (or the observations in the 99th percentile of the sample). In both cases, the results replicate our main findings very closely. Finally, we wanted to verify whether our results are driven by the dynamic of specific regions. From figure 1 it is manifest that Piedmont and Lombardy had been severely hit by the COVID, hence the intensity of the treatment there could bias the results. We then excluded those two regions from our estimation and replicate the baseline analysis. Results are once again really close to our main framework, thus validating its soundness<sup>14</sup>.

#### 6. Before-after comparison

Our identification strategy is only able to capture differences in WFH job creation induced by the differential *intensity* of Covid-19, leveraging the important geographical variation in Covid-19 spread over Italy. Yet, one potential concern is that Covid-19 might have determined a change in firms' work organization, and correspondingly in labor demand, irrespective of the severity with which they were locally hit by the pandemic shock. To put it in other words, even in LLMs affected by low excess mortality, firms, looking at what happened in highly-affected LLMs, might have started creating more teleworkable jobs. For its nature, our strategy is not able to capture such generalized effects. Thus, in this appendix, we also report the results of a simple before-after event-study analysis.

Notwithstanding its limitations and strong identifying assumptions, a before-after analysis is useful to highlight potential temporal breaks in WFH job creation that were triggered by the Covid-19 outbreak. We present the results in the form of an event-study specification:

$$WFH\ Index_{iltc} = \alpha + \sum_{t} \beta_t D_t + D_i + D_c + D_s + D_y + \epsilon_{it}$$
(6)

which, unlike Eq. (4), does not consider interactions of the period dummies with the excess mortality. Hence, in the figures, the coefficients on the period dummies (and not the interactions with  $Exc_j$ ) are plotted. We present these estimates only for the baseline specifications in figure A.20-figure A.23, according to the different types of contracts.

Under the before-after identifying assumptions, we should observe that the confidence intervals before the Covid-19 outbreak overlap with zero. This is indeed confirmed in all the figures. The lack of any anticipation effect pre-Covid-19 is hardly surprising given the unexpected nature of the pandemic. By contrast, a significant increase in the share of teleworkable jobs is evident after the start of the pandemic. As expected, the estimated effects in the before-after analysis are larger than those in our baseline analysis, since they do not exploit the severity of the pandemic, but they simply quantify changes compared to the pre-pandemic period. For instance, in the first semester of the pandemic

<sup>&</sup>lt;sup>14</sup> Results for all these additional robustness tests are available on request.

the share of 'teleworkable' jobs increased by 0.6 pp, 1.4 pp and 0.4 pp, for total hirings, and hirings in permanent and temporary jobs, respectively, compared to the previous semester. Also in the beforeafter analysis, the effects appear to be transitory, lasting for about three semesters. Although the before-after analysis cannot control for other temporal shocks with exactly the same timing as the pandemic outbreak, it is hard to think of unobserved factors that might have spuriously generated the observed dynamics.

These results highlight how the change in the composition of hirings toward more teleworkable jobs has not been solely related to the intensity of Covid-19 but also to the timing of the pandemic itself.

#### 7. **Concluding remarks**

The unprecedented shock caused by the Covid-19 pandemic necessitated significant changes in the way firms had to organize their workforce. To sustain production even during the most stringent lockdowns, the adoption of WFH became widespread across all major economies. Firms found it necessary to reorganize their work practices to adapt to this new paradigm, which could have a profound impact on labor demand dynamics.

In this paper, we leverage rich Italian data, both from an administrative employer-employee dataset (COB) and a survey on professions akin to the U.S. O\*Net, but specific to the Italian labor market (ICP). We employ a DID-like methodology to assess the impact of the severity of the pandemic, which we proxy using excess mortality at the Local Labor Market level, on the flow of new hires, with a particular focus on jobs that are well-suited for WFH.

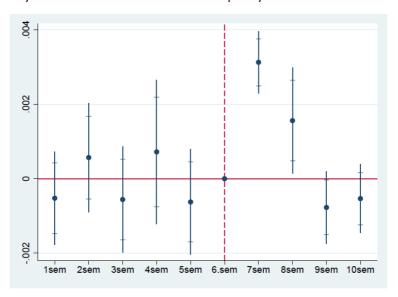
Our results demonstrate that comparing two firms in LLMs differing by one-SD in excess mortality, the one in the LLM more heavily affected by Covid-19 experienced on avarage a 1% larger creation of teleworkable jobs in the post-pandemic period, which rises to 2% when focusing on hirings with openended contracts. A DID-event-study analysis shows the validity of the common trend assumption and that although the effect appears to be transitory and to diminish from the third semester after the onset of the pandemic, the stronger impact found on open-ended contracts suggests that the transformation of the workforce may have been structural. The effects on the first and second semester of the pandemic, especially on permanent contracts, are sizeable, amounting to increases of 2%-4% induced by a one-SD difference in excess mortality. An effect-heterogeneity analysis shows larger effects on younger workers, females, firms located in Northern and partly Southern Italy (compared to the Center), larger firms (above 250 employees) and in the service sector compared to manufacturing.

Given the important shock to the demand for teleworkable jobs documented in our study, we find it of great relevance to analyze how this shift might have further influenced both workers and firms. To do so, a possible development of our work could employ data on wages (e.g., from the Italian National Social Security Institute, Inps) to assess whether because of the higher demand, workers in WFH jobs experienced a wage increase. These further analyses are left for future work.

#### **Appendix**

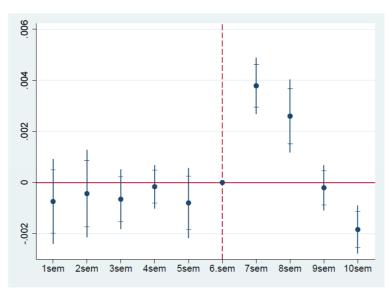
#### **Additional figures**

Figure A.1 Event Study Estimation WFH - Permanent + Temporary



Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem). Source: Author's elaborations on COB-ICP dataset 2017-2021

Figure A.2 Event Study Estimation WFH - Male



Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem). Source: Author's elaborations on COB-ICP dataset 2017-2021

004 002 1sem 2sem 4sem 5sem 6.sem 7sem 8sem

Figure A.3 Event Study Estimation WFH - Female

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem). Source: Author's elaborations on COB-ICP dataset 2017-2021

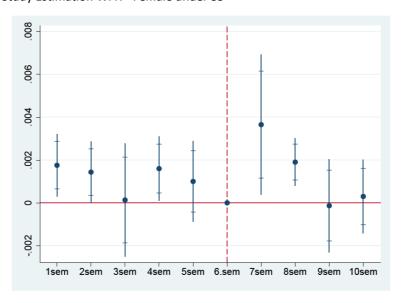


Figure A.4 Event Study Estimation WFH - Female under 35

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem). Source: Author's elaborations on COB-ICP dataset 2017-2021

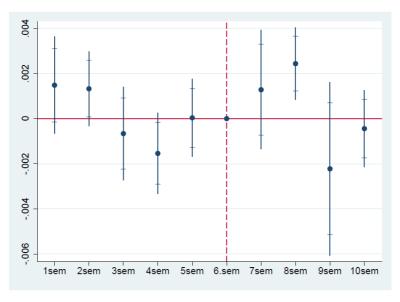


Figure A.5 Event Study Estimation WFH - Female 35-55

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem). Source: Author's elaborations on COB-ICP dataset 2017-2021

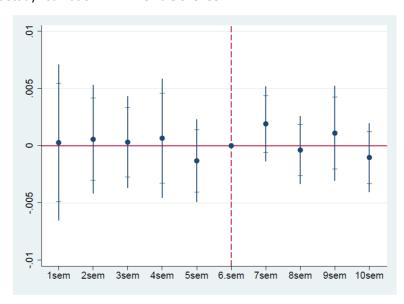


Figure A.6 Event Study Estimation WFH - Female over 55

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem). Source: Author's elaborations on COB-ICP dataset 2017-2021

002 002 1sem 2sem 3sem 4sem 5sem 6.sem 7sem 8sem 9sem 10sem

Figure A.7 Event Study Estimation WFH - Under 35

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem). Source: Author's elaborations on COB-ICP dataset 2017-2021

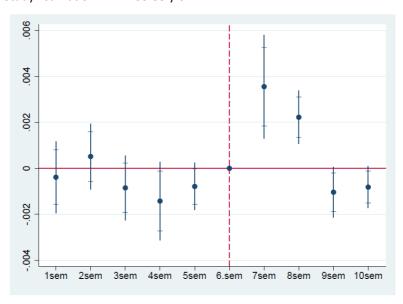


Figure A.8 Event Study Estimation WFH - 35-55 y.o.

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem). Source: Author's elaborations on COB-ICP dataset 2017-2021

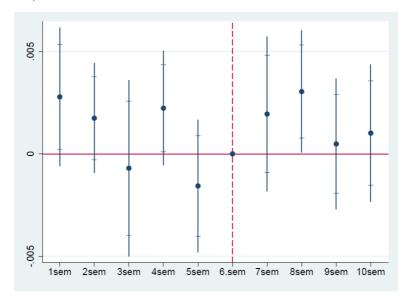


Figure A.9 Event Study Estimation WFH - Over 55

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem). Source: Author's elaborations on COB-ICP dataset 2017-2021

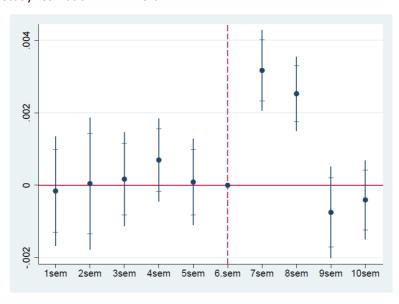


Figure A.10 Event Study Estimation WFH - North

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem).

Source: Author's elaborations on COB-ICP dataset 2017-2021

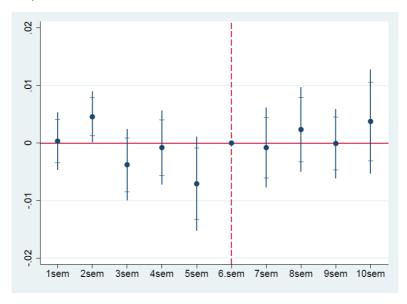


Figure A.11 Event Study Estimation WFH - Center

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem). Source: Author's elaborations on COB-ICP dataset 2017-2021

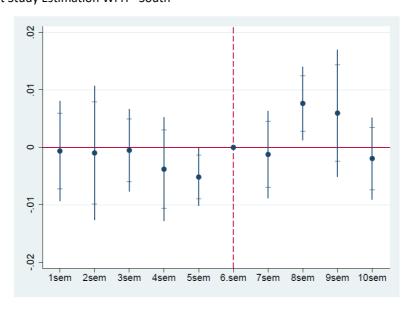


Figure A.12 Event Study Estimation WFH - South

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem). Source: Author's elaborations on COB-ICP dataset 2017-2021

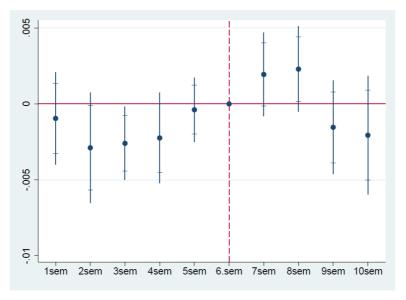


Figure A.13 Event Study Estimation WFH -Manufacturing sector

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem).

Source: Author's elaborations on COB-ICP dataset 2017-2021

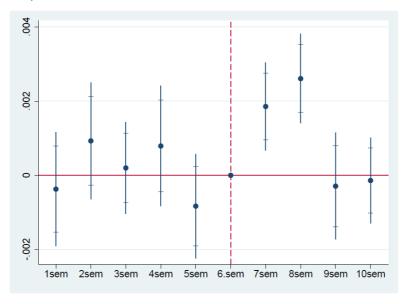


Figure A.14 Event Study Estimation WFH - Service sector

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem). Source: Author's elaborations on COB-ICP dataset 2017-2021

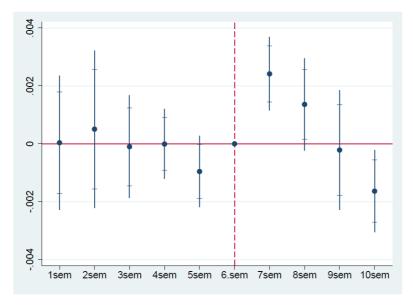


Figure A.15 Event Study Estimation WFH - Small firms (less than 50 employees)

Note: this figure displays the estimated coefficients of the before-after analysis, which exclude excess mortality from Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem).

Source: Author's elaborations on COB-ICP dataset 2017-2021

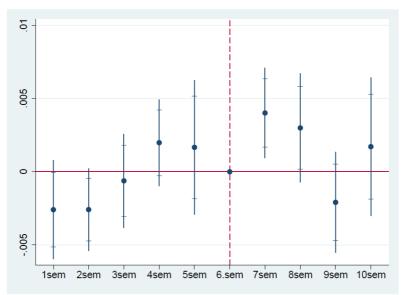


Figure A.16 Event Study Estimation WFH -Medium firms (50-250 employees)

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem). Source: Author's elaborations on COB-ICP dataset 2017-2021

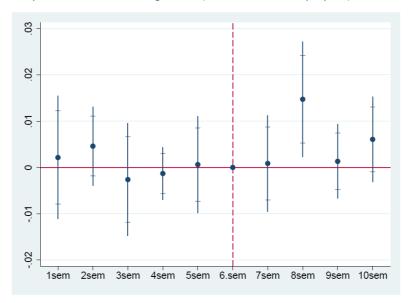


Figure A.17 Event Study Estimation WFH - Large firms (more than 250 employees)

Note: this figure displays the estimated coefficients of Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem). Source: Author's elaborations on COB-ICP dataset 2017-2021

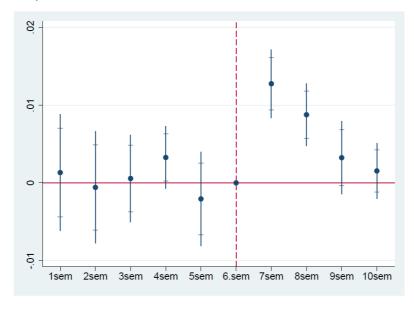


Figure A.18 Event Study Estimation - Continuous WFH measure

Note: this figure displays the estimated coefficients of Eq. (3), adopting as dependent variable a standardized, continuous indicator. The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem).

1sem 2sem 3sem 4sem 5sem 6.sem 7sem 8sem 9sem 10sem

Figure A.19 Event Study Estimation - Macro Occupation FEs

Note: this figure displays the estimated coefficients of Eq. (3), adopting as dependent variable a standardized, continuous indicator. The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem).

Source: Author's elaborations on COB-ICP dataset 2017-2021

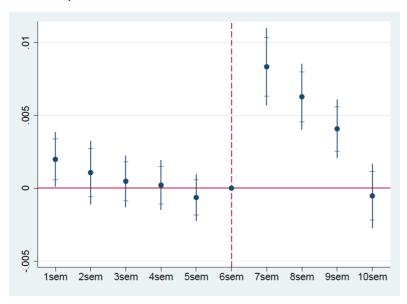


Figure A.20 Before-After Analysis All Contracts

Note: this figure displays the estimated coefficients of the before-after analysis, which exclude excess mortality from Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem).

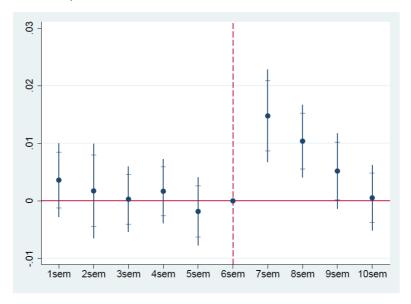


Figure A.21 Before-After Analysis - Permanent

Note: this figure displays the estimated coefficients of the before-after analysis, which exclude excess mortality from Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem).

Source: Author's elaborations on COB-ICP dataset 2017-2021

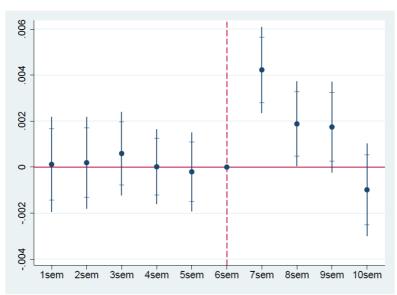


Figure A.22 Before-After Analysis - Temporary

Note: this figure displays the estimated coefficients of the before-after analysis, which exclude excess mortality from Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem).

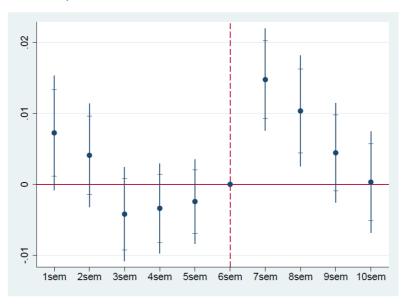


Figure A.23 Before-After Analysis - Other

Note: this figure displays the estimated coefficients of the before-after analysis, which exclude excess mortality from Eq. (3). The spikes represent the 95% confidence intervals, the lines the 99% confidence intervals based on standard errors clustered at the LLM level. On the horizontal axis is reported the timing, from the 1st semester of 2017 (1sem) to the 2nd semester of 2021(10sem); the reference period is the second semester of 2019 (6sem).

#### **References**

- Aksoy C.G., Barrero J.M., Bloom N., Davis S., Dolls M., Zarate P. (2023), *Working from home around the world*, CEP Discussion Paper n.1920, London, Center for Economic Performance
- Alfano V. (2022), COVID-19 diffusion before awareness: The role of football match attendance in Italy, Journal of Sports Economics, 23, n.5, pp.503-523
- Alipour J.-V., Falck O., Schüller S. (2023), Germany's capacity to work from home, *European Economic Review*, 151, article 104354
- Angelici M., Profeta P. (2023), Smart working: Work flexibility without constraints, *Management Science*, 5 May
- Autor D.H., Dorn D. (2013), The Growth of Low-Skill Service Jobs and the Polarization of the U.S. Labor Market, *American Economic Review*, 103, n.5, pp.1553-1597
- Barbieri T., Basso G., Scicchitano S. (2022), Italian Workers at Risk During the COVID-19 Epidemic, *Italian Economic Journal*, 8, pp.175-195
- Barrero J.M., Bloom N., Davis S. (2023), *The Evolution of Working from Home*, SIEPR Working Paper n.19, Stanford, Stanford Institute for Economic Policy Research
- Barrero J.M., Bloom N., Davis S. (2021), Covid-19 is a persistent reallocation shock, *AEA Papers and Proceedings*, 111, pp.287-291
- Bartik A.W., Cullen Z.B., Glaeser E. L., Luca M., Stanton C.T. (2020), What Jobs are Being Done at Home During the Covid-19 Crisis? Evidence from Firm-Level Surveys, NBER Working Paper n.27422, Cambridge MA, National Bureau of Economic Research
- Basso G., Boeri T., Caiumi A., Paccagnella M. (2020), *The new hazardous jobs and worker reallocation*, OECD Social, Employment and Migration Working Paper n.247, Paris, OECD
- Berta P., Bratti M., Fiorio C.V., Pisoni E., Verzillo S. (2021), *Administrative border effects in COVID-19* related mortality, IZA Discussion Paper n.14930, Bonn, IZA
- Bick A., Blandin A., Mertens K. (2023), Work from Home before and after the Covid-19 Outbreak, *American Economic Journal: Macroeconomics*, 15, n.4, pp.1-39
- Bloom N. (2023), *Golf, rent, and commutes: 7 impacts of working from home*, Stanford Report, Stanford University
- Bloom N., Bunn P., Mizen P., Smietanka P., Thwaites G. (2023), The Impact of Covid-19 on Productivity, *Review of Economics and Statistics*, pp.1-45
- Bloom N., Liang J., Roberts J., Ying Z.J. (2015), Does Working from Home Work? Evidence from a Chinese Experiment, *The Quarterly Journal of Economics*, 130, n.1, pp.165-218
- Bonacini L., Gallo G., Scicchitano S. (2021), Working from home and income inequality: Risks of a 'new normal' with COVID-19, *Journal of Population Economics*, 34, n.1, pp.303-360
- Buia R.E., Cavapozzi D., Pasini G., Simonetti I. (2023), What is the future of (remote) work?, in Börsch-Supan A., Abramowska-Kmon A., Andersen-Ranberg K., Brugiavini A., Chlon-Dominczak A., Jusot F., Laferrère A., Litwin H., Smolic S., Weber G. (eds.), Social, health, and economic impacts of the COVID-19 pandemic and the epidemiological control measures. First results from SHARE Corona Waves 1 and 2, Berlin Boston, De Gruyter, pp.163-172
- Buonanno P., Galletta S., Puca M. (2020), Estimating the severity of Covid-19: Evidence from the Italian epicenter, *Plos one*, 15, n.10, article e0239569

- Crescenzi R., Giua M., Rigo D. (2022), How many jobs can be done at home? Not as many as you think!, Geography and Environment Discussion Paper n.37, London, LSE
- De Chaisemartin C., d'Haultfoeuille X. (2018), Fuzzy Differences-in-Differences, The Review of Economic Studies, 85, n.2, pp.999-1028
- DeFilippis E., Impink S.M., Singell M., Polzer J.T., Sadun R. (2020), Collaborating During Coronavirus: The Impact of COVID-19 on the Nature of Work, NBER Working Paper n.27612, Cambridge MA, National Bureau of Economic Research
- Dingel J.I., Neiman B. (2020), How many jobs can be done at home?, Journal of Public Economics, 189, article 104235
- Etheridge B., Wang Y., Tang L. (2020), Worker productivity during lockdown and working from home: Evidence from self-reports, ISER Working Paper n.12, Essex, Institute for Social and Economic Research
- Feng Z., Savani K. (2020), Covid-19 created a gender gap in perceived work productivity and job satisfaction: Implications for dual-career parents working from home, Gender in Management, 35, n.7-8, pp.719-736
- Gibertoni D., Adja K.Y.C., Golinelli D., Reno C., Regazzi L., Lenzi J., Sanmarchi F., Fantini M.P. (2021), Patterns of COVID-19 related excess mortality in the municipalities of Northern Italy during the first wave of the pandemic, Health & Place, 67, article 102508
- Lee K. (2023), Working from home as an economic and social change: A review, Labour Economics, 85, article 102462
- Mongey S., Pilossoph L., Weinberg A. (2021), Which workers bear the burden of social distancing?, The Journal of Economic Inequality, 19, pp.509-526
- Morikawa M. (2022), Work-from-home productivity during the Covid-19 pandemic: Evidence from Japan, Economic Inquiry, 60, n.2, pp.508-527
- Msemburi W., Karlinsky A., Knutson V., Aleshin-Guendel S., Chatterji S., Wakefield J. (2023), The WHO estimates of excess mortality associated with the COVID-19 pandemic, Nature, 613, n.7942, pp.130-137



