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ABSTRACT

Artificial Intelligence (Al) is fundamentally transforming the scientific process across all stages, from
hypothesis generation and experimental design to data analysis, peer review and dissemination of
results. In many research fields, such as the examined protein structure prediction, materials discovery
and computational humanities, Al accelerates discovery, fosters interdisciplinary collaboration and
enhances reproducibility, while improving access to advanced analytical and computational capabilities.
These developments align with the European Union (EU)’s vision to make Al tools and infrastructure
more accessible, strengthening research in areas of strategic importance such as climate change,
health, and clean technologies. However, this progress introduces new challenges, including concerns
about algorithmic bias, the proliferation of hallucinations and fabricated data, and the potential erosion
of critical thinking skills. Al adoption remains uneven across scientific domains, and addressing these
risks requires robust governance, transparency and alignment with open-science principles. This report
serves as the scientific evidence base for the European Strategy for Al in Science, offering insights to
help policymakers navigate the challenges and opportunities of Al. It supports efforts to maximize

the benefits of Al for research excellence and competitiveness in the EU, while maintaining a firm
commitment to ethical, inclusive, and European values.



FOREWORD

Artificial Intelligence (Al) is transforming
today’s scientific process, which is the engine
driving human progress, in ways that could
redefine who participates in, benefits from and
has influence over discovery. From the initial
stage of inquiry to the publication of results,

Al is emerging as a vital tool in scientific
discovery. This transformative potential, powered
by sophisticated models and unprecedented
computational capabilities, is expanding access
to knowledge, lowering entry-barriers and
accelerating breakthroughs from climate to
health and clean technologies. Evidence-based
policymaking is needed to navigate the paradigm
shift underway, which carries major economic,
societal and geopolitical implications.

The Al in Science report provides the scientific
and technical foundation for the European
Strategy for Al in Science, which aims to
define policy priorities for the European Union
(EU). Its main objective is to help policymakers
maximise Al’s benefits for EU research excellence,
innovation and competitiveness, while ensuring its
deployment remains ethical, inclusive and aligned
with core European values.

Drawing on deep dives into Al technology for
protein structure prediction, material discovery
and computational humanities, this report
showcases how Al is accelerating innovation and
strengthening EU research. Opportunities are
emerging across the full scientific process, from
data analysis to the generation of novel research
hypotheses. By assessing their potential and
impact, the report gathers invaluable insights

to guide investments in crucial areas such as
high-performance computing and open-science
infrastructure. This research can thereby boost
EU competitiveness at global level.

As Al becomes increasingly integrated in
scientific research, it is important to stay

mindful of the challenges we may face. The
report brings significant concerns to light, such
as algorithmic bias, the risk of “hallucinations”
and the potential for Al to unintentionally limit
the range of research questions being explored.
To foster scientific integrity and maintain public
trust, we must approach Al in science with a
deep commitment to robust governance and a
collective vision that emphasises transparency
and inclusivity in our scientific practices.

We welcome this report as a timely and

crucial contribution to our understanding

of Al in science. It shows the Commission’s
commitment to knowledge-based policy-
making. This document is a key resource for a
coordinated policy approach as well as a call to
collaboration across the scientific community,
through shared infrastructures, open-source Al
and transparent standards. These efforts would
make Al-generated results more trustworthy
and consistent, supporting a successful
implementation of Al in scientific developments.

Marc Lemaitre
Director-General

Bernard Magenhann
Director-General
European Commission  European Commission
Joint Research Centre Research and Innovation
(JRC) (RTD)
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EXECUTIVE
SUMMARY

This report provides a scientific and technical
analysis of the role of Artificial Intelligence (Al)
in science and the scientific process, offering
evidence-based insights to guide strategic
decisions. It explores how a wide range of Al
techniques, particularly Machine Learning (ML),
Deep Learning (DL) and Generative Al (GenAl),
are reshaping every stage of research, from
hypothesis generation to result publication and
community building.

Policy context

Al is reshaping science at an unprecedented
pace, transforming how knowledge is generated,

experiments are designed, and results are shared.

The European Union (EU) is already addressing
the broader governance of Al through initiatives
such as the EU Al Act, which establishes rules
to ensure that Al systems used within the EU are
safe and respect fundamental rights and values,
along with foster trustworthy Al by setting clear,
risk-based rules for Al developers and deployers.
In parallel, there is a growing need to facilitate
and accelerate the responsible uptake of Al in
scientific research. The European Strategy for
Al in Science responds to this need by aiming
to develop and improve access to Al tools and
computing infrastructure, attract and develop
talent, and strengthen research in strategic
areas such as climate change, health, and clean
technologies. This report provides evidence on
how Al is transforming the scientific process,
the opportunities it offers, and the challenges it
presents. It supports the implementation of the
strategy by informing policymakers about the
practical implications of Al for research integrity,
innovation and EU’s competitiveness.

Key conclusions

The analysis conducted in the report confirms
that Al has transformative potential across

every stage of the scientific process. These
capabilities allow researchers to identify patterns
and relationships that would otherwise remain
hidden, fostering scientific breakthroughs and
expanding interdisciplinary collaboration. However,
the impact of Al is not inherently positive; it
highly depends on the conditions under which it
is deployed and governed. The derived findings
point to three main areas where policy actions
are needed to ensure Al fulfils its potential while
safeguarding the integrity of science.

Firstly, the findings reinforce that open science
principles (including open data, open models and
open infrastructure) are paramount for fostering
innovation and ensuring the reproducibility

and trustworthiness of Al-driven research.

Policy support can expand and sustain these
ecosystems, ensuring a fair and sustainable
access to the required tools.

Secondly, the report highlights the growing
challenge of computational and data
infrastructure. While Al models are becoming
more powerful and versatile, they also require
significant resources for training and deployment.
This makes investment in High-Performance
Computing (HPC), Al Factories and open scientific
data repositories essential to secure the EU’s
position as a leader in Al research.

Third, the integration of Al demands a new
skill set for researchers. The most impactful
research emerges from ‘hybrid’ roles and teams
that combine deep scientific domain knowledge
with proficiency in Al and data science methods.
Policies should therefore focus on attracting,
developing and retaining this interdisciplinary
talent to ensure that human expertise remains
central to the research process.

Finally, a new problem has been identified: the
risk of epistemic drift. This phenomenon, driven
by the co-creation of knowledge with machines,



refers to a fundamental shift in what is considered
valid scientific knowledge and how it is produced.
This can manifest in two ways: as Al technologies
inadvertently reinforces established research
paradigms and narrows the diversity of questions
explored, or as Al technology fosters a culture
where scientific conclusions are separated from
their human sources and authors, meaning that
knowledge production is detached from human
oversight and control . Al can also produce
fabricated information or ‘hallucinations’, which, if
undetected, may distort scientific understanding.
Addressing these issues requires policies

that promote Al literacy, critical thinking and
multidisciplinary collaboration to ensure human
expertise remains central. By proactively mitigating
these risks, the EU can safequard the integrity of the
scientific process and foster public trust in science.

Main findings

Al is reshaping research by becoming a
collaborative partner in knowledge production
and assisting at every stage of the scientific
process. It accelerates literature review and
knowledge discovery, enables the generation of
innovative hypotheses, supports more efficient
and targeted experimental design, and facilitates
the processing of complex, multimodal datasets.
In particular, our main findings suggest that Al is
transforming the scientific process of:

— Asking questions and formulating
hypotheses: Al is evolving from a passive
tool into an ‘Al co-scientist’, assisting at the
early stages of research by accelerating
literature analysis and identifying
knowledge gaps. This function fosters
new ‘interdisciplinary collaborations’, as
Al tools can synthesise information from
diverse fields to propose novel and testable
hypotheses. Large Language Models
(LLMs) and other domain-specific systems,
in all the steps of the scientific process,
can bridge previously unrelated concepts,
requiring human oversight to ensure
validity and prevent biases towards well-
documented areas of research.

Designing and conducting experiments:
Al enables automated experiment design,
simulation and optimisation, improving
efficiency and allowing for ‘self-driving
labs’. Al tools can generate executable
code for experiments and manage complex
instruments in real-time. The Nobel Prize-
winning success of AlphaFold is a prime
example of the transformative power of
Al, accurately predicting protein structures
and accelerating the testing of hypotheses
about biological mechanisms. This allows
scientists to explore larger experimental
domains, but risks oversimplifying real-
world complexity.

Collecting and analysing data: Al
processes vast, multimodal datasets to
detect patterns beyond human capability,

a process that has led to breakthroughs

in fields like astronomy and genomics.
Al-enhanced tools in archaeology analyse
massive datasets from satellite and LiDAR
imagery to discover new ancient sites.
Building on this analytical capability, Al is
also being used in materials discovery for

a new paradigm called ‘inverse material
design’, where the process of analysing
properties from existing data is reversed

to computationally generate new materials
that match a desired set of properties .
These processes might raise concerns about
data quality, interpretability and the opacity
of ‘black-box’ models.

Interpreting results and drawing
conclusions: Al-driven methods assist in
translating data into insights and formal
theory but often lack transparency in their
causal explanations. Al tools can act as

a safeguard to ensure new findings are
consistent with existing knowledge, aiding
in verification.

Publishing and communicating
findings: Al tools are increasingly used
for scientific writing, including editing
and summarisation, enhancing clarity



and breaking down language barriers.
Automation supports drafting and
visualisation, but raises questions about
authorship, originality and trustworthiness.

Related and future Joint Research
Centre work

This study was developed by different teams

of the Joint Research Centre (JRC), specifically
belonging to units F.7, T.1 and T.3 (in alphabetical
order), and it was managed and overseen by

the JRC.T.3’s Human Behaviour and Machine
Intelligence (HUMAINT) team, whose work focuses
on providing a multi-disciplinary understanding

of the impact that Al systems have on human
behaviour.

This report deliverable is part of the joint
‘Al4Science’ project between JRC.T.3, DG RTD.E.4
and the EU Al Office (specifically DG CNECT.A.2),
which focuses on two different areas. On the
one hand, the project analyses the impact of the
Al Act on scientific research and outreach the
EU scientific community on this aspect. On the
other hand, the project provides scientific and
technical support to DG RTD and EU Al Office
policies intended to foster the use and uptake of
Al in scientific research. Future JRC work related
to the presented report will follow the described
objectives.

Quick quide

Al refers to machine-based systems that,

for a given set of inputs and objectives, infer
how to generate outputs like predictions or
recommendations. The presented report analyses
how these systems are used in scientific research.
The methodology is mainly based on a broad
review of scientific literature, focusing on the
core steps of the scientific process. The report
highlights that Al offers huge potential for
accelerating discovery but comes with significant
uncertainties, particularly concerning algorithmic
bias, data quality and the risk of generating
inaccurate information. The report begins with

an introduction that provides a general overview

of the role of Al in science and the report’s
purpose. The core of the report consists of the
study of the Al's impact in the scientific process,
which explores the recurring trends, challenges
and limitations of using Al at each stage. It then
delves into three deep dives, which examine how
Al is being used in specific research fields, i.e.
protein structure prediction, material discovery
and computational archaeology, to illustrate its
practical applications. The final chapters discuss
the ethical, legal and societal implications of Al in
science, including data, models and infrastructure,
and conclude with final considerations and
recommendations for the responsible uptake of Al
in scientific research.
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1.1 Motivation and approach

Recent developments in the Artificial
Intelligence (Al) field are having a strong
impact in many sectors and activities, being
scientific research impacted in different steps
and across disciplines. The rapid advancement of
Al capabilities, evolving from traditional Machine
Learning (ML) to contemporary Generative Al
(GenAl) models, is fundamentally reshaping the
way knowledge is created and disseminated. This
transformation spans multiple fields, affecting
the entire spectrum of scientific research and
influencing everything from foundational studies
to applied technologies.

The European Commission (EC) has recognised
this transformative potential and has integrated
the promotion of Al in Science into its general Al
strategy, intended to harness Al’s vast potential
while addressing relevant risks. On the one hand,
the European Strategy for Al in Science? intends
to accelerate the adoption of Al by European
Union (EU) scientists by creating essential enablers
such as improved access to data, computational
power and talent. On the other hand, the strategy
addresses science-specific Al challenges such as
preserving scientific integrity and methodological
rigour (European Commission: Directorate General
for Research and Innovation, 2023).

This report, authored by the EC’s scientific service,
the Joint Research Centre (JRC), aims to provide
scientific and technical evidence to the mentioned
strategy. It specifically focuses on the use of Al

in scientific research, highlighting aspects that

are unique compared to its application in other
contexts. The core policy problem addressed

by this report focus on navigating the rapid
transformation of scientific research driven by Al. It
seeks to answer the crucial question of maximising
the benefits of Al for EU research excellence,
innovation and competitiveness, while ensuring
that its deployment remains ethical, inclusive, and
aligned with EU values. A significant challenge

2 https://research-and-innovation.ec.europa.eu/research-
area/industrial-research-and-innovation/artificial-
intelligence-ai-science en.

lies in fostering the adoption of Al techniques,
which promise to accelerate discovery, enhance
reproducibility and promote interdisciplinary
collaboration. At the same time, it is essential to
mitigate emerging risks such as algorithmic bias,
the spread of fabricated data (often referred to as
‘hallucinations’) and the potential erosion of critical
thinking skills. These challenges are not uniform,
however, and vary depending on the specific Al
technology employed. For instance, the creation
of spurious information is a limitation particularly
inherent to Large Language Models (LLMs) and
other Generative Al (GenAl) systems. This complex
issue demands a nuanced, evidence-based
approach due to the uneven adoption of Al across
various scientific domains and the pressing need
for robust governance.

The scope of this report matches the definition

of Al system in the EU Al Act (Regulation (EU)
2024/1689), which is in line with the one of the
Organisation for Economic Co-operation and
Development (OECD, 2024). The term Al system
means a machine-based system that is designed
to operate with varying levels of autonomy and
that may exhibit adaptiveness after deployment,
and that, for explicit or implicit objectives, infers,
from the input it receives, how to generate outputs
such as predictions, content, recommendations

or decisions that can influence physical or virtual
environments. In this respect, the report reviews
the use of a varied set of Al techniques, including
traditional machine learning approaches. However,
this report puts a special emphasis on recent
developments on Al, notably linked to Large LLMs
or GenAl, as the reports addresses for instance their
use to deal with large corpus of scientific literature
or to support the writing of scientific publications.

The main objectives of this report are therefore
to provide a structured, evidence-based analysis
that informs and supports the EU’s strategic
decisions. To this end, the report:

— Presents an overview of the current
landscape of Al in science and the core
stages of the scientific process.


https://research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/artificial-intelligence-ai-science_en
https://research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/artificial-intelligence-ai-science_en
https://research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/artificial-intelligence-ai-science_en

— Assesses the impact of Al across each
step of the scientific process, identifying
recurring trends, challenges, and limitations.

— Provides a detailed analysis through
three deep dives, i.e. protein structure
prediction, material discovery and
computational humanities (specifically
ancient site discovery and virtual restoration
of inscriptions) to illustrate the practical
implications of Al use in diverse fields.

— Extracts common challenges and
opportunities from these case studies
to formulate general conclusions and
recommendations for the responsible
uptake of Al in scientific research.

Figure 1. Visual structure of the report.
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This structured approach ensures that the findings
can be applied to identify policy problems. For
instance, evidence on the computational and

data demands of advanced Al models highlights
the need for strategic investment in High-
Performance Computing (HPC) and open data
repositories. Similarly, the detailed analysis of
risks, such as fabricated data produced by GenAl
models, underscores the need for policies that
promote Al literacy, critical thinking and robust
governance to safeguard the science integrity.
This comprehensive analysis, illustrated by the
structure in Figure 1, provides a relevant scientific
and evidence-based support to the adoption of
the European Strategy for Al in Science.

Data, models, and infrastructure
Skills and innovation
 Ethical and legal considerations )
| Societal implications
Collaborations
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CONCLUSIONS
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Source: JRC’s own elaboration.

1.2 Artificial intelligence landscape

This section provides an overview of the overall
Al landscape in the EU compared to key global
competitors. The JRC’s Digital Techno-Economic
Ecosystem (DGTES) methodology applied for this
analysis of the European and global Al landscape
combines and harmonises multiple data sources
into a network database representation of the
digital ecosystem.? In particular, the methodology
incorporates a wealth of economic indicators and

3 https://joint-research-centre.ec.europa.eu/projects-and-
activities/digital-techno-economic-ecosystem-dates-
mapping-and-analysing-digital-and-other-industrial en.
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micro-level information, encompassing industrial,
geographical, and technologies dimensions.

The DGTES approach has been deeply developed
to map the digital ecosystem, their elements and
structure, resulting in the DGTES database (Calza
et al.,, 2022, 2023). The outcome of the mapping
exercise leads to a network of players connected
through collaborative activities. A player is an
organisation (academic institution, government
body, or firm) that conducts research, innovates
or has a business related to digital technologies.

4 In identifying players, emphasis is placed on organisations
rather than individuals, i.e. the applicant or developing


https://joint-research-centre.ec.europa.eu/projects-and-activities/digital-techno-economic-ecosystem-dgtes-mapping-and-analysing-digital-and-other-industrial_en
https://joint-research-centre.ec.europa.eu/projects-and-activities/digital-techno-economic-ecosystem-dgtes-mapping-and-analysing-digital-and-other-industrial_en
https://joint-research-centre.ec.europa.eu/projects-and-activities/digital-techno-economic-ecosystem-dgtes-mapping-and-analysing-digital-and-other-industrial_en

These are the research, (patent-driven) innovation
and business activities of the digital ecosystem.
When more than one player contributes to

the same activity, a link emerges between

them, resulting in a network of collaborations.
The analysis employs textual data describing
organisational activities globally, identifying

1.9 million entities involved in over 2.5 million
relevant activities between 2009 and 2024 .5

Al is at the core of the digital ecosystem,
being the second largest technology out of

15 in the ecosystem in terms of its related
activities. These activities are identified by

over 700 Al-related keywords entailing various
technological solutions based on the principles of
and contributing to the development of artificial
intelligence, such as Natural Language Processing
(NLP) and ML. This section presents analysis on
EU’s competitiveness on Al, firm ownership, and
venture capital investments to assess potential Al
foreign funding dependencies in the EU.

The mapping exercise identifies 319 thousand
global players engaged in Al during 2009-

2024, with over 809% concentrated in China,

the US, and the EU (Figure 2). These players are
research institutes, government bodies, and firms
publishing scientific articles, filing for priority
patents, or having their core business related to
Al (henceforth, Al activities). Thus, each Al player
has at least either its core business oriented to
Al, a patent filed on Al, a publication on Al, or any
combination of them. On this basis, one player
can be linked to multiple activities. On average, Al
players have 1.4 activities each.”

organisation in the context of patents, affiliation instead

of individual authors in conference proceedings and
publications. Companies’ subsidiaries (distinct legal entities)
are considered separate players.

5 Data sources: Scopus, PATSTAT, Orbis, S&P Capital 1Q,
Crunchbase, Dealroom, and Dow Jones. Data on EU funded
projects comes from CORDIS.

& Digital Areas: 3D Printing; 5G; Advanced Computing, HPC;
Artificial Intelligence (Al); Cloud Computing; Cybersecurity;
Distributed Ledger Technologies (DLT); Dynamic Data;
e-Commerce; Extended Reality; Internet of Things (IoT); Power
Electronics; Quantum Technologies; Robotics; Verticals.

7 Data from DGTES database, as on 27 August 2025.
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Figure 2. Global distribution of Al players by
geographical area, in terms of the cumulative number
of firms over 2009-2024.
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Source: JRC DGTES database.

By 2024, two in five global Al players had at least
one research and innovation (R&l) activity, i.e. had
filed for a patent on Al or published a scientific
article on the topic. The share is similar across
regions, with China displaying a slightly higher
share than the US and EU (Figure 3). A closer look
by separating research from innovation activities
reveals that the EU has a larger composition of
Al players with research activities (13% of all Al
players) than the US (4%) and China (1%). Taken
together, these findings unveil the relevance of
innovation activities in the Al global landscape
and the role of EU scientific output pushing the
Al-knowledge frontier.

Figure 3. Number of Al players with and without

R&I activities in the EU, US and China, in terms of

the cumulative number of players over 2009-2024
by region. Light-shaded areas represent the number
of players with at least one Al-related R&I activity
(innovation or research) and labels display their share
with respect to all Al players in a geographical area.
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Source: JRC DGTES database.
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In analysing the EU’s global position in
innovation, the data indicate that the EU
contributes a relatively limited portion to the
global patent landscape. As displayed in Figure
4, out of more than 226 thousand patents
related to Al filed from 2009 to 2024, only 3%
were filed by EU players, positioning the EU
behind China (76%), US (11%), and South Korea
(79%).2 The disproportionate share of China on
innovation activities is consistent with China’s
patent promotion policies that encourage filing
for patents which do not directly imply an
improvement in innovation quality (Chen and
Zhang, 2019; Long and Wang, 2019).

Figure 4. Number of Al-related patent applications by
geographical area, in terms of the cumulative number
of innovation activities over 2009-2024 by region.

CN
76%

Source: JRC DGTES database.

Funding from the EC plays a crucial role in
enhancing EU’s capabilities in Al. Because EU-
funded programmes are accessible only to EU
Member States and a select few other countries,
data from these programs is excluded from global
comparisons for consistency. However, within

the EU, programmes like the seventh Framework
Programme (FP7), Horizon 2020 (H2020), and
Horizon Europe (HE) have been instrumental in
strengthening the EU’s Al ecosystem and fostering

8 Differences between US and EU patent share partly reflect
institutional rules. The United States Patent and Trademark
Office (USPTO) has historically been more permissive
toward software while the European Patent Office (EPO)
requires a technical character. This leads to more software
filings in the US than the EU (OECD, 2009).
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32%

2%

networks of knowledge among participants (Righi
et al,, 2021).°

When considering EU-funded projects, the number
of Al players increases by 46%, rising from
almost 20000 to 28870, with a third of these
players engaged in Al-related EU-funded activities
(Figure 5). This underscores the impact of EU-
funded projects in supporting the European Al
ecosystem, particularly in certain Member States.
On average, 36% of Al players in each country
are involved in Al-related EU-funded projects
(Figure 6). For some countries the relevance of

EU programmes for the Al ecosystem is even
stronger. For instance, 64% of Al players in
Greece participate in EU-funded Al projects.
Similarly, Slovenia and Cyprus have more than
half of their Al players involved exclusively in such
programmes.

Figure 5. Composition of Al-players in the EU by their
participation in EU funded projects, in terms of the
Cumulative number of Al players in the EU over 2009-
2024.

M Players not participating in
EU funded projects with
research, innovation, or
business activities

m Players participating in EU
funded projects with
research, innovation, or
business, activities

28870
Al players

Players participating in EU
funded projects without
research, innovation, or
business, activities

66%

Source: JRC DGTES database.

° Righi et al. (2021) analyses the strategic position of

EU countries in Al in R&I network compared to that once
accounting for EU funded projects and finds that EC-funded
programmes have reinforced the collaborations between
players and countries within the EU.



Figure 6. Participation of Al-players in EU funded
projects in EU27, in terms of share of Al players in the
EU over 2009-2024 by country.
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To assess strengths and potential dependencies
on funding of EU in Al, the focus turns to the
investment linkages between Al firms and other
entities.’ In this setting, a firm is financially
connected to another firm or entity (which may
or may not be an Al-player) through two types
of relationships: firm-owner and Venture Capital
(VC) investor-investee. While these roles are
interrelated, they represent distinct types of
connections. A VC investor may influence a firm’s
strategy without typically having legal control,
whereas the firm-owner relationship identifies the
entity with formal ownership and control rights,
traced through direct and indirect shareholders.
VC data is valuable for understanding funding
dynamics, while ownership data is essential for
mapping corporate control structures.

On the firm-owner link, the complexity of the
dataset allows tracing the location of the global
ultimate owner of one out of ten firms in the
global Al ecosystem. The global ultimate owner

is defined as that controlling over 50% of the
shares of a company. Foreign-owned firms have a
global ultimate owner located in another country.
In the EU, a firm is foreign when the owner is
located outside the EU, while ownerships between
Member States are domestic. With 26% of firms
with known ownership, the EU the region with the
highest share of tracked ownership (this figure is
99% for China and 15% for the US).

10 For the analysis of investments, the target are firms,
leaving aside other types of players (research institutes
and government bodies). The mapping identifies over 17
thousand firms in the EU engaged in Al activities.
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Nine out of ten EU-based firms on Al with
known ownership data are domestically
controlled. This ratio is taken from the over 4.4
thousand EU-based firms on Al with available
data on their global ultimate owner (26% of the
total) as shown in Figure 7. A closer look at the
data, shows that four countries concentrate 80%
of global ultimate owners of the over 500 EU
foreign-owned firms in Al (Figure 8). US entities
control almost half of foreign-owned Al firms
located in the EU. The UK hosts 17% of global
ultimate owners, while 7% of firms have an owner
in Switzerland and another 7% in Japan.

Figure 7. Ownership of EU-based Al firms: data
coverage vs foreign composition. Data coverage allows
tracing the global ultimate owner of 26% of identified
Al firms based in the EU (pie chart). The bar shows the
composition of domestic and foreign ownership of the
firms with known ownership. Foreign ownership defined
as the global ultimate owner holding more than 50%
of shares. A firm located in the EU is foreign when the
traced ownership

owner is outside the EU.
[ ]
) I
74%

Source: JRC DGTES database. Data coverage as of 2024.
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Domestic
ownership
3917

Firms with no

Figure 8. Foreign ownership of Al firms in the EU by
country of the global ultimate owner. Foreign ownership
defined as the global ultimate owner holding more than
50% of shares. A firm located in the EU is foreign when
the owner is outside the EU.

RoW
20%

%

UK
17%

JP
7% us

49%

CH
7%

Source: JRC DGTES database. Data coverage as of 2024.
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On the VC investor-investee link, the final
dataset traces back funding received by firms
worldwide with a total capital raised of EUR 74
billion during 2009-2024. VC investment is a vital
source of resources for innovative startups and
small firms with high-growth potential, as they
typically have limited access to traditional sources
of financing.

Al firms in the EU have limited access to global
venture capital funding, despite the various
policy actions taken to foster VC investment.u
Over 2009-2024,2 73% of global Al industry

VC funding was directed to either US or Chinese
firms (53% and 209%, respectively). Only 7% of
all VC funding to Al firms during the period went
to firms located in the EU (Figure 9), slightly
surpassing the funds channelled to the UK
based firms (5% of total). Since the outbreak

of COVID-19 in 2020, VC investments in Al
increased largely leading to a surge in funding
for startups. The pandemic accelerated the
digital transformation and applications of Al in
multiple sectors such as healthcare and mobility
and in 2021, global VC investments in Al reached
a peak, driven mostly by US based and Chinese
firms.

11 For firms engaged in other technologies besides Al, the
total amount of VC funding received is weighted by the
relevance of Al for the firm to avoid double counting in the
whole digital ecosystem. The weight is then proportional to
the number of Al keywords that trigger the appearance of
the firm.

12 Examples of policy actions include the Regulation on
European Venture Capital Funds (EUVeCa), the European
Fund for Strategic Investment (EFSI), the Pan-European
Venture Capital Fund-of-Funds programme (VentureEU),
the European Scale-up Action for Risk capital (ESCALAR)
programme and InvestEU.
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Figure 9. Global VC investments by destination over
2009-2024 (cumulative, EUR billion). The investment
figures are weighted by the engagement of each firm in
each technology area based on keywords frequency. VC
investment rounds include angel, seed, pre-seed, series
A- J and unknown types.

40 us

35

30

VC funding to Al firms (EUR, billion)

RoW
10

5 EU
/ UK

0

2009 2011 2013 2015 2017 2019 2021 2023

Source: JRC DGTES database. VC funding to Al firms as
identified by DGTES (Calza et al, 2022).

Figure 10 offers insights into how investment
patterns evolve at different phases of business
development across main recipient countries,
highlighting where investors are focusing their
resources within the Al sector over the last five
years. Understanding these stages, ranging from
early-stage rounds to later-stage investments,
can shed light on the maturation process of

Al firms and the confidence investors have in
their growth potential.’* These data serve as a
critical indicator of the dynamics within the Al
startup landscape, illustrating both the scale
of investment and the timing and strategic
allocations that drive innovation forward.

Compared to international competitors, the US
concentrated not only most VC funds, but also

13 Short description for each stage of deal is as follows — Seed:
initial funding to develop an idea or prototype, often from angel
investors (small round to get a new company off the ground)

or seed funds (while the company is young and working to gain
traction); Early: investment in a startup when it starts scaling its
operations, typically Series A or B rounds; Late: growth equity
firms and more established firms, usually before an initial
public offering (IPO) or acquisition. The typical number of seed
rounds that a company goes through before completing an IPO
is three. However, there is no set number of rounds that must be
raised. Data sourced from Crunchbase. For further information
on deal types, see https://support.crunchbase.com/hc/en-us/
articles/115010458467-Glossary-of-Funding-Types.
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the largest number of deals across all stages of
funding since 2020. China, however, accounted for
the largest deals on average across all funding
stages, despite cumulating fewer deals than
other regions. Focusing on the EU, the seed stage
has been more dynamic than in the UK and even

China, adding up to over a thousand registered
seed deals of EUR 0.6 million on average. These
deals, though smaller on size, provide the initial
capital to startups to transform innovative ideas
into viable products and services.

Figure 10. VC deals and size by stage in main destinations over 2020-2024 (EUR million). Bars show the number

of deals (y-axis), while dots the average size over the period (x-axis). The investment figures are weighted by the
engagement of each firm in each technology area based on keywords frequency. VC investment seed rounds include
angel, seed, pre-seed; early-stage rounds include series A and B; late-stage rounds include series C-J and unknown types.
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Source: JRC DGTES database. VC funding to Al firms as identified by DGTES (Calza et al,, 2022).

Analysing the source of investments and their
allocations helps identify potential funding
dependencies for innovative firms. The chord
diagram in Figure 11 visualises the distribution

of VC globally and its source. Since 2020, VC-
backed Al firms summed over EUR 28 billion in
investments globally. With over EUR 14 billion, the
US is the most significant global funding source,
with most investment (77%) made locally and the
remaining spread across multiple geographical
areas. The US has a net outflow with the EU and
UK, where US funding for foreign firms is higher
than the amount received. China is more restrictive,
keeping most investments in the domestic market.
With over EUR 2.5 billion invested during the
period, the EU occupies the third place as a private
funding source and shows a balance between local
and foreign investments. There is a net inflow of
funding with the UK and the US while a net outflow
with China, which represents 5% of all VC-sourced
EU investment to Al firms.
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Figure 11. Domestic and cross-border VC in main
destinations over 2020-2024 (EUR million). Each macro
area is represented as a piece of the outer circumference
(investor) while the arcs connect to the recipients’
macro areas. Arcs that start and end in the same macro
area represent domestic investment. Arcs that connect
different macro areas, represented the sum of the flows
between two selected areas over 2020-2024. The
colour of the arc is the colour of the macro area that

is attracting more investment between the two. The
investment figures are weighted by the engagement of
each firm in each technology area based on keywords
frequency. VC investment rounds include angel, seed,
pre-seed, series A-J and unknown types. The Unknown
label refers to investors with unidentified location.

Unknown

EU

CN
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Source: JRC DGTES database. VC funding to Al firms as
identified by DGTES (Calza et al,, 2022).



Al has become one of the defining technologies
of the 21st century, shaping competitiveness,
productivity, and innovation capacity. Today, the
global Al landscape is shaped by three main
hubs, namely the US, China, and the EU, with
other economies such as the UK, South Korea,
and India contributing with the startup and
innovation ecosystem. While the US dominates
global Al in scale and venture capital investment
to fund innovative startups, China has rapidly
positioned itself as a global powerhouse in Al
patent-driven innovation. The EU, on the other
hand, holds strength in scientific output, pushing
the knowledge frontier and the region’s research
excellence. EU funded projects play a pivotal role
in boosting the Al ecosystem in the EU, further
enhancing its competitive edge.

1.3 Al in science research community

This section provides an overview of scientific
papers on Al in science, analysing the research
community’s characteristics, including geographical
location, affiliation type and collaboration patterns.
Differently from other contributions (European
Commission, Directorate General for Research

and Innovation et al., 2023; Fudan University and
Shanghai Academy of Al for Science, 2025; OECD,
2023) that analyse ‘Al in science’ by intersecting
publications in Al with different scientific fields,
this report takes a more targeted approach. It
specifically examines publications that address
topics related to the scientific process (as
described in Section 1.4) and metascience,* which
studies of how science is conducted, evaluated

and disseminated, through the investigation of
peer review, reproducibility, research evaluation,
research impact, open science and citation analysis
(Nature, 2025).

The integration of Al into scientific research
represents a broad and fast-evolving
interdisciplinary frontier. It spans all stages of
the mentioned scientific process, from hypothesis
generation and experimental design to data
collection, modelling, analysis and interpretation.
This transformation is being driven not only

4 https://metascience.com/mission/.
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by the availability of data and computational
infrastructure, but also by the convergence of
domain expertise with ML and Al methods.

It is important to distinguish between
multidisciplinary and interdisciplinary
approaches. While multidisciplinary research
involves drawing on multiple disciplines to examine
a topic from various perspectives, interdisciplinary
research goes further by integrating the knowledge
and methods from these disciplines to create

a new, synthesised approach. This distinction is
crucial for understanding how Al fosters new
collaborative paradigms in science, moving

beyond parallel efforts toward a more integrated,
problem-focused approach. The resulting research
overview reflects a diversity of scientific goals,
methodologies and disciplinary intersections, all
contributing to the emergence of Al in science.

Practically, the analysis is conducted by adopting
Scopus® as the data source and using the
methodology developed by the divinAl* project,
which researches and establishes a set of diversity
indicators associated with Al developments,
emphasising the geographical patterns of
researcher presence in academic and non-academic
institutions, with a focus on the differences in their
distribution and representation. For a comprehensive
description of the methodology, including the
definition of the diversity indicators (e.g. affiliation
types), as well as recent findings, please refer to the
publication by Gomez et al. (2024).

Table 1 illustrates the set of keywords selected
for the analysis of the research landscape on Al
in science presented in this section (referred to
as ‘General’), along with the keywords used in the
analogous analyses conducted for the deep dives
(Section 3). In addition to the reported terms, to
tailor the investigation to the intended objectives,
the search queries are enriched with Al-related
keywords (referred to as Artificial intelligence),
added in logical conjunction.

15 Scopus is a large, multidisciplinary database of
peer-reviewed literature: scientific journals, books, and
conference proceedings. Website: https://www.elsevier.com/
products/scopus/.

6 https://ai-watch.ec.europa.eu/humaint/divinai_en.
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Table 1. Keywords employed for the literature analysis with the divinAl methodology by deep dive.

Topic Keyword set ac

General

( “discovery” OR “scientific research” OR “enhanced experimentation”

OR “hypothesis generation” OR “scientific methodology” OR “scientific
methodology” OR “research design” OR “scientific analysis” OR “knowledge
discovery” OR “scientific discovery” OR “data interpretation” OR “in science”
OR “scientific method” OR “automated scientific discovery” OR “research
methodology” OR “scientific process” OR “experimental design” OR “scientific
modelling” OR “scientific modelling” OR “scientific inquiry” OR “research
innovation” OR “scientific exploration” OR “data-driven science” OR
“experimental science” OR “scientific investigation” OR “scientific experiments”
OR “scientific research methodologies” OR “scientific research methodology”
OR “hypothesis testing” OR “research innovation” OR “research advancement” )

Protein structure
prediction

( “protein folding” OR “protein design” OR “protein structure prediction” )

Material discovery

( “materials science” OR “materials engineering” OR “materials chemistry”
OR “materials physics” OR “materials technology” OR “nanomaterials” OR
“metallurgy” OR “polymer science” OR “ceramic engineering” OR “composite
materials” OR “biomaterials” OR “solid state physics” OR “surface science” OR
“materials characterization” OR “smart materials” OR “advanced materials”
OR “functional materials” )

Site discovery and virtual
restoration of inscriptions

( “site discovery” OR “virtual inscription restoration” OR “virtual restoration of
inscriptions” )

Artificial Intelligence

( “Al” OR “machine learning” OR “artificial intelligence” OR “deep learning” OR
“Al-driven” OR “reinforcement learning” OR “neural networks” OR “predictive
analytics” OR “Al technologies” OR “natural language processing” OR
“generative ai” OR “large language models” OR “computational intelligence”
OR “Al methods” OR “Al methodologies” )

Source: JRC’s own elaboration.

The general analysis is conducted on

77,306 publications indexed in Scopus with

the described methodology, considering the
contributions having a non-empty affiliation
attribute. The selected retrieval period is from
January 2015 and May 2025. Despite the deep
dives (Section 3) being studied in a more recent
period (i.e. from 2020 to 2025), this broader
analysis considers a comprehensive timeframe

to capture the full evolution of the field and the
impact of key developments in Al. The year 2015
is indeed considered a crucial turning point due to
significant advances in new technologies like DL,
notably with the introduction of breakthroughs
neural architectures, such as ResNet (He et al,,
2016), which laid the foundation for the rapid
adoption of Al-related techniques across different
scientific disciplines.
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This quantitative analysis provides a high-level
overview of the geographical distribution of
scientific output (Figure 12), the institutional
landscape (Figure 13 and Figure 14), and the
collaborative networks that characterise the
global research effort on Al in science (Figure 15).

In terms of geographical distribution (Figure

12), US and China almost equally lead in total
contributions with, respectively, 15,437 (20%) and
15,209 (19.7%) publications, followed by the EU
with 12,167 (15.7%) contributions. Further behind,
with fewer contributions, are India (7,420; 9.6%),
the UK (3,789; 4.9%), Canada (2,020; 2.6%),
Australia (1,641; 2.1%), South Korea (1,529; 2%),
Japan (1,490; 1.9%), South Africa (1,043; 1.3%)
and Switzerland (1,032; 1.3%).



Figure 12. Global geographical distributions of scientific literature contributions related to ‘Al in science’ topics,
indexed by Scopus between Jan. 2015 and May 2025.
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Source: JRC’s own elaboration based on divinAl methodology.

Conducting a worldwide investigation of the
different typologies of establishments involved
in the scientific research on Al in science, the
analysis of the top ten contributing countries
and regions (Figure 13) confirms that the
majority of scientific publications are produced
by academic institutions. These are followed,
in most regions, by private companies, which
contribute slightly more than public research

facilities and healthcare institutions. Non-profit
organisations and government bodies account
for a smaller share of output overall. Notably, in
India and Australia, government bodies represent
the second largest group of contributors after
academia, which accounts for 84.8% and 79.9%
of all publications, respectively, the two highest
academic shares among the top ten regions.

Figure 13. Distribution of ‘Al in science’ literature contributions by type of establishments and geographical area.
Considered contributions are indexed by Scopus between Jan. 2015 and May 2025.
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A focus on the EU (Figure 14) shows the significant
increase in the number of publications over the
years, especially since 2020, and confirms the
dominant position of educational institutions,

with substantial contributions also coming

from research facilities, private companies and
healthcare institutions, followed by non-profits
and government bodies. The growing availability
of open datasets, pre-trained models as well as
shared computational infrastructure has enabled
broader participation across both large and smaller
institutions, supporting a more distributed and
interdisciplinary research landscape.

Figure 14. Amount of ‘Al in science’ literature
contributions in the EU by type of establishments over
the years from Jan. 2015 to May 2025. Considered
contributions are indexed by Scopus.
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Extending the vision on the interplay between
different type of institutions and different regions,
examining collaboration networks is crucial to
understand how the whole research landscape
on Al in science is being shaped. Co-authorship
analysis (Figure 15(a)) reveals that the most
prominent cross-regional collaborations occur
between the US and the EU, followed by strong
links between the US and China, and to a lesser
extent between the US and Canada. Within the
Southern Hemisphere, a notable collaboration
emerges between Australia and China, while in
European continent, the EU and the UK maintain
close scientific ties. In the EU, institutional
collaborations (Figure 15(b)) among academic
institutions, private companies, research facilities,
and healthcare institutions are particularly
prevalent, with academia playing a central role
in facilitating these partnerships. Collaborations
between educational institutions and non-profit
organisations or government bodies are less
common. These patterns reflect the broadening
of Al applications across sectors, with academic
research increasingly interconnected with
clinical, industrial and technological innovation
environments.

Figure 15. Collaboration patterns in ‘Al in science’ field. Amount of co-authored literature contributions by (a)
geographical area and (b) type of establishments (only EU). Considered contributions are indexed by Scopus between

Jan. 2015 and May 2025.
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1.4 Scientific process

The scientific process, often referred to as

the scientific method, is a structured, iterative
framework that sets the ground for the
development of empirical knowledge. Originating
from the early formulation by the philosopher
Francis Bacon, who emphasised inductive
reasoning from observation to generalisation
(Bacon, 1620), and later refined through Karl
Popper’s hypothetico-deductive model centred
on falsifiability (Popper, 1959), the scientific
process has evolved into a widely accepted
methodology for systematic investigation. Its core
steps (i.e. posing a research question, conducting
background research, formulating hypotheses,
testing through experimentation, analysing
results, and communicating findings) are not
rigid rules but guiding principles that support
reproducibility and methodological rigor (Dewey,
1910; National Research Council, 2012).

In contemporary science, this process operates

as a mechanism of acquiring knowledge, as

well as a cognitive and organisational medium
that facilitates interdisciplinary collaboration,
peer evaluation, and cumulative advancement

of theories (Giere, 1979; Hempel, 1966). It

serves both epistemic and practical purposes

by structuring how questions are asked and
answered, allowing for the systematic refinement
of hypotheses, and fostering the accountability of
empirical claims through standardised procedures.

Figure 16. The scientific process steps.
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However, to fully account for how scientific
knowledge is validated, institutionalised,

and expanded, it is increasingly important to
consider the role of the scientific communities
as an integral part of the process. They are

not merely audiences for scientific findings,

but the arena in which credibility, consensus,
and quality standards are negotiated (Kuhn,
1962). Building and participating in a scientific
community (e.g. through publication venues and
institutional collaborations) can be seen as a
final and essential step in the scientific process.
It is through these communities that knowledge
claims are assessed, theories are debated and
refined, and interdisciplinary exchanges promote
innovation (Knorr-Cetina, 1999; Longino, 2002;
Wenger, 1998).

Understanding the impact of Al on each of these
stages is crucial to assessing how scientific
research is being transformed. From question
formulation and hypothesis generation to
experimentation, data analysis, dissemination
and community engagement, Al technologies are
reshaping the way scientists work, the nature

of the questions they can pose, and the speed,
scale, and precision with which they arrive at and
validate new knowledge. Before diving into the
details of the novel capabilities and challenges
that Al introduces to the core of scientific
research, this section will illustrate each step of
the scientific process, as displayed in Figure 16.
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D
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Source: JRC’s own elaboration based on the scientific literature (see Section 1.4).
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1. Ask a question (or make an

observation). The scientific process
begins with observing a phenomenon or
posing a question about something of
interest, whether broad or specific. This
process serves as an empirical approach to
assessing phenomena in the universe. The
questions typically take the form of How,
What, When, Who, Which, Why or Where.

In structured settings, questions should be
measurable, ideally with numerical data, to
ensure objective analysis.

. Conduct background research (or a

literature review). Conducting background
research is a crucial step in the scientific
process, as it helps determine what is
already known about the topic and whether
others have asked the same questions.

This research informs the design of an
experiment by identifying the most effective
techniques and equipment for investigation.
Rather than starting from scratch,
researchers utilise existing resources to
refine their approach and develop a solid
theoretical foundation. Understanding the
underlying principles behind a study is
essential, as it enables scientists to predict
outcomes and interpret results accurately.

In structured settings, demonstrating this
understanding is particularly valuable, as it
shows an awareness of why a study yields
specific results.

. Construct a hypothesis. A hypothesis

is an educated guess that attempts

to explain an observation or answer a
specific question. It serves as a testable
explanation that may later be considered a
fact if consistently supported by evidence.
A well-formulated hypothesis allows for
predictability, ensuring that the observed
phenomenon can be tested and repeated
under similar conditions. To strengthen

its validity, a hypothesis should be
accompanied by measurable predictions,
enabling systematic evaluation through
experimentation.

. Test your hypothesis by performing an

experiment. An experiment is designed

to test the accuracy of a prediction and
determine whether the hypothesis is
supported or not. To ensure reliability, the
experiment must be a fair test, meaning
only one factor is changed at a time while
all other conditions remain constant (a
condition known as ceteris paribus). A
well-constructed test should produce
measurable or observable changes,
allowing for empirical analysis. Repeating
the experiment multiple times is essential
to confirm that the results are consistent
and not due to chance. Controlling for other
variables further strengthens the validity
of the findings, ensuring that any observed
effects are directly linked to the factor being
tested.

. Analyse your data. Once the experiment is

complete, the collected measurements are
analysed to determine whether they support
the hypothesis. The results are compared

to the initial prediction using the predefined
metrics to assess their alignment. A
thorough review of all collected data is
essential, utilising charts and graphs to
identify patterns and trends. This analysis
reveals whether the expected outcomes
were achieved and provides insights into the
findings. By carefully interpreting the data,

a clearer understanding emerges of why
certain outcomes occurred, offering a logical
explanation based on empirical evidence.

Draw conclusions based on acceptance
or rejection of the hypothesis. The
conclusion of an experiment summarises
whether the results support or contradict
the original hypothesis. Key facts from
background research can be integrated

to provide a clearer explanation of

the findings, including any observed
relationships between the independent

and dependent variables. In many cases,
scientists discover that their predictions are
inaccurate, leading them to communicate
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their results and refine their hypotheses
based on new insights. This iterative
process is fundamental to the scientific
process, as even supported hypotheses
often undergo further testing in different
conditions. If the results do not align with
the original hypothesis, they should be
reported transparently rather than altered
to fit expectations. Scientists frequently
encounter unexpected results, using

them as a foundation for formulating

new hypotheses and guiding future
research. When additional experimentation
is necessary, outlining the next steps
ensures continuous inquiry and deeper
understanding. Scientific research is an
ongoing process, and every outcome,
whether confirming or refuting a hypothesis,
contributes valuable knowledge that
fosters further questions and exploration.
In structured settings, the emphasis is
placed not on proving a hypothesis correct,
but on the depth of learning and analytical
reasoning demonstrated throughout the
process.

. Communicate your results. The final

step in a scientific project involves
communicating the results through a
report, a display board or a presentation.
This practice mirrors professional scientific
communication, where researchers publish
their findings in journals or present them
at conferences. Proper documentation of
the experiment’s results contributes to

the broader body of knowledge, allowing
other scientists to learn from the findings.
Regardless of whether the results support
the original hypothesis, they provide
valuable insights and may lead to new
questions or the formulation of a revised
hypothesis for further testing. Scientists
value the learning process, and the
contributions made through transparent and
well-documented research.

Build your scientific community. The
scientific outcomes of individual researchers
or teams are mediated by the scientific
community they belong to. A scientific
community is a network of researchers
working on a particular discipline, topic

or field, which gathers around a series of
publication venues (journals, conferences)
or academic organisations. Scientific
communities provide the space for peer
review, which ensures objectivity and quality
of the scientific outcomes, the definition

of vocabulary, methodologies, and quality
standards and a space for collaborations
and debate.” Interdisciplinary and cross-
institutional activities are also beneficial for
scientific progress.

17 https://en.wikipedia.org/wiki/Scientific _community.
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ARTIFICIAL
INTELLIGENCE IN THE
SCIENTIFIC PROCESS



Artificial Intelligence (Al) is reshaping the way
scientific research is conducted, influencing both
foundational and practical methods (Jaakkola,
2024; Musslick et al., 2025; Pal, 2023; Rolnik,
2024; Xie et al., 2024). Once confined to computer
science and data processing, has become an
active participant in scientific inquiry across
multiple disciplines like philosophy (Q. Chen et
al, 2024; Ye et al,, 2024), social sciences (Hou
and Huang, 2025; Xu et al., 2024), and medicine
(Ahn, 2024; Lin, 2024), especially in the forms of
Machine Learning (ML) (Carpenter et al., 2025;
Gu and Krenn, 2025a) and Deep Learning (DL)
(Onishi, 2025; Wang and Han, 2023), including
Generative Al (GenAl) (Alvarez et al., 2024;
Goretti et al., 2025) and Large Language Models
(LLMs) (Bi et al., 2024; Burton et al., 2024). These
technologies are now integrated into various
stages of the research process, from generating
new ideas to analysing complex data and
disseminating findings.

Al tools are transforming how researchers engage
with science. They can generate human-like

text and images (Bail, 2024; Jeon et al,, 2025),
automate experimental design (Albert and
Billinger, 2025; Bartolomeis et al., 2025), and
assist in analysing vast and complex datasets
(Ding et al,, 2023; Tan et al,, 2024). Between 2012
and 2022, the share of scientific publications that
engaged with Al across twenty fields quadrupled
(Narayanan and Kapoor, 2025). Through 2023, an
estimated 1% of academic articles incorporated
GenAl during the writing process, with continued
growth expected (Gray, 2024). Moreover, Al-
assisted papers accounted for 1.57% of selected
papers in a 2024 large-scale analysis covering
biology, chemistry, geology, materials science,
medicine, and physics (Hao et al,, 2024).
Researchers who integrate Al into their workflows
often experience measurable benefits: they
publish more, receive citations at a faster rate,
and are more likely to take on leadership roles
(Hao et al., 2024). These patterns suggest that
structural incentives within research ecosystems
are accelerating the adoption of Al technologies.
The integration of Al offers significant potential.

It enables scientists to process large volumes of
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information quickly, uncover patterns that might
otherwise go unnoticed, and automate repetitive
tasks (Goretti et al., 2025). These capabilities can
enhance efficiency and support more ambitious or
creative research (Schmidgall et al., 2025).

However, the integration of Al into science
presents significant challenges and risks (Beel et
al, 2025; Eger et al,, 2025; Hanson et al,, 2023;
Lahav et al,, 2022; Lin and Zhang, 2025; Musslick
et al,, 2025; Narayanan and Kapoor, 2025; Rolnik,
2024; Schetinger et al,, 2023; Tang et al,, 2025;
Wasim and Zaheer, 2023). There are concerns
about issues like hallucination (Drosos et al., 2024;
Eger et al,, 2025; Galli et al,, 2024; L. Huang et
al,, 2025; Messeri and Crockett, 2024; Schryen et
al., 2025), bias (Abeliuk et al., 2025; Algaba et al,,
2025; Goretti et al., 2025; Gottweis et al,, 2025;
Hosseini and Horbach, 2023; Jeon et al.,, 2025;
Kabir et al., 2025; Messeri and Crockett, 2024;
Monge Roffarello et al., 2025; Seghier, 2025;
Tyser et al., 2024), lack of transparency in how
results are produced (Binz et al., 2025; Bolafios et
al, 2024; Eger et al.,, 2025; Gottweis et al,, 2025;
Saeidnia et al., 2024), and potential to exacerbate
social inequality (Bail, 2024; Binz et al., 2025;
Goretti et al., 2025). Such limitations threaten

the reliability and accountability of Al-assisted
science, including a broader risk that widespread
adoption may lead to a reduction in diversity

in research methods or viewpoints, resulting

in a less heterogeneous and understandable
scientific landscape (Messeri and Crockett, 2024).
Addressing these risks requires careful attention
to governance, ethics, and regulatory alignment.
The development and use of Al in science should
be guided by principles that promote transparency,
fairness, and inclusivity. Scientific communities
play a central role in determining how these tools
are deployed and in managing their benefits and
limitations.

This section examines how Al is affecting each
stage of the scientific process (depicted in Figure
16), from the initial observation and formulation
of research questions to hypothesis development,
experimental design, data analysis and
communication of results. The analysis draws on



peer-reviewed literature and high-impact preprints
from January 2020 to July 2025 (with just some
few exceptions from previous years), to offer a
comprehensive and evidence-based perspective.
The section also focuses on methodological
transformations and aims to inform researchers,
policymakers and interdisciplinary stakeholders
who are shaping the future of scientific research.
For every scientific process step described
previously, patterns and limitations are identified
by analysing Al’'s contributions at each stage .

2.1 Ask a question (or make an
observation)

Al can support scientists in the early stages of
research by helping them identify gaps, discover
new research topics, as well as formulate and
refine research questions or objectives (Broska
and McFarland, 2025; Feng, 2024; Nicholas et al,,
2024). Language models can assist researchers
in generating ideas by providing relevant inputs
interactively through user-friendly interfaces (Lo
et al.,, 2023; Nigam et al., 2024). Additionally, in
this step, Al offers opportunities for defining and
framing problems (Pretolesi et al., 2025).

2.1.2 RECURRING AND EMERGING
TRENDS

— Idea generation support - Al is evolving
from a passive ‘data-crunching tool’ to
an active ‘idea generator’ Al tools act as
a co-scientist during the early stages of
research design and ideation (Feng, 2024;
Gottweis et al., 2025). They can go through
large amounts of data to find areas where
knowledge is limited and suggest new
topics (Kim et al., 2024; Nicholas et al.,,
2024)yet incorporating patient perspectives
into health research has been inconsistent.
We propose an automated framework
leveraging innovative natural language
processing (NLP. The Al co-scientist system
is designed to generate novel research
theories and proposals based on data-
driven objectives and guidance (Gottweis et
al., 2025). Al can assist in initiating parts of
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the search strategy for systematic reviews,
starting with defining the scope based

on the rationale, objectives or questions
addressed (Majumder et al., 2024; Watzold
et al., 2024).

Knowledge gap identification - Al

is helping to uncover ‘what we don’t

know’ by analysing extensive bodies of
literature. Modern tools based on LLMs can
synthesise diverse pieces of information,
making it manageable to identify gaps

or inconsistencies in existing knowledge
(Oksanen, 2024; Zhang et al., 2024).

By creating knowledge graphs or using
embedding models, Al systems can conduct
a Literature-Based Discovery (LBD), a
concept asserting that new knowledge

can be uncovered by connecting logically-
related fragments of existing information
in public literature that have not yet been
explicitly linked or interpreted (Luo et al.,
2025). Its central idea is to formulate

novel hypotheses by bridging previously
unrelated concepts found across various
publications, as well as hidden relationships
rooted in real-world concerns (Z. Chen et
al.,, 2024; Y. Hu et al., 2025). Although this
technigue was originally developed decades
ago (Swanson, 1986), recent advances
(such as leveraging DL- or LLM-based
analyses on scientific texts) significantly
enhance the ability to propose plausible
research directions that bridge gaps in

the literature (Duede, 2023; Luo et al,,
2025). For example, these approaches have
been applied to propose drug repurposing
candidates and to uncover hidden relations
in biomedical text (Gao et al., 2024; Liu et
al,, 2025).

Al as a creative partner - Researchers
have begun folding Al into the creative
aspects of science. Instead of using Al only
for data analysis, scientists are exploring
Al to brainstorm ideas and suggest what
questions to pursue (Gu et al., 2025; Pu

et al,, 2024; Si et al., 2024) providing



valuable frameworks for understanding and
implementing creative processes. However,
recent work using Large Language Models
(LLMs. For example, theoretical physicist
Mario Krenn developed an Al system
(named Melvin) that autonomously designed
a new quantum optics experiment (Krenn
et al,, 2016), a setup his team had not
conceived on their own. The Al’s proposal,
initially emailed to Nobel laureate Anton
Zeilinger, was novel and intriguing: after
several years, the Al-designed experiment
worked in practice (Krenn et al,, 2022).

This success demonstrated that Al could
propose viable experiments or hypotheses,
effectively asking new scientific questions.
Moreover, GenAl models may explore and
generate ideas, integrating multidisciplinary
perspectives, to solve research problems
creatively (Schryen et al,, 2025). In this
scenario, Al can even generate research
topics that experts (e.g. oncologists) rate as
novel and significant, reflecting users (e.q.
patients) concerns, indicating its capacity to
generate ideas in specific interdisciplinary
domains (Kim et al., 2024).

2.1.2 CHALLENGES AND
LIMITATIONS

Al’s strength is often seen in solving pre-specified
problems (‘easy problem’), while coming up

with the problem itself or requiring continual
conceptual revision (‘hard problem’) is still

largely beyond current capacities (Battleday

and Gershman, 2024). There are concerns that

Al might shift collective attention away from

new and original questions that lack the data
required for Al to demonstrate a benefit (Hao

et al., 2024). Automating tasks like identifying a
research question can be challenging as they rely
on diverse and subjective inputs that may not

be structured for machine processing (Musslick

et al., 2025). The increasing capability of Al to
formulate research questions necessitates a re-
evaluation of current scientific paradigms, moving
towards ‘deep research’ agents and potentially

Al co-scientists that can operate with significant
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autonomy (Gottweis et al., 2025). This evolution,
however, raises important questions about
accountability and the very definition of scientific
creativity, prompting a broader discussion on

the ethical implications and the evolving role of
human scientists, who may increasingly focus on
high-level strategic direction, critical evaluation,
and the ethical oversight of Al-generated inquiries
(Liang et al., 2024).

2.2 Conduct background research (or
a literature review)

The rapid growth of scientific literature presents
a significant challenge. Al is dramatically
improving the efficiency and scope of background
research (Bolafios et al., 2024; Mostafapour et
al.,, 2024; Schryen et al., 2025; Jiyao Wang et

al., 2024). It helps researchers find and digest
information faster (through intelligent search

and summarisation), ensures that crucial prior
findings are not overlooked (via automated
extraction of data and evidence), and even
highlights novel connections in literature that

can inform new studies (Bednarczyk et al,,

2025; Peters and Chin-Yee, 2025; Saeidnia et al.,
2024). Al-powered tools are transforming the
way researchers handle these tasks by utilising
Natural Language Processing (NLP), ML, LLMs,
citation and knowledge graphs to automate

the retrieval, extraction, and summarisation of
scientific information (Glickman and Zhang, 2024;
Rajwal et al,, 2025; Zeng et al., 2025). They assist
researchers in navigating previous work and offer
considerable potential for automating literature
reviews with personalised models (Agarwal et

al., 2025; Z. Liu et al., 2024; McGinness et al.,
2024; Miah et al., 2024). Agents based on LLMs
have shown the ability to produce readable and
detailed literature reviews (Z. Liu et al., 2024;
Sami et al., 2024).

2.2.1 RECURRING AND EMERGING
TRENDS
— Enhanced search and discovery - Al-

based tools offer more than just basic
keyword matching; they provide context-
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aware and semantic search capabilities.
These tools can generate answers based
on search results and offer comparative
insights (Eger et al., 2025). Examples
include ChatGPT and Gemini ‘Deep
Research’, Elicit, ORKG ASK, NotebookLM,
and various Recommender Systems (RSs)
(Y. Huang et al., 2025; Oelen et al., 2024;
Whitfield and Hofmann, 2023). This is
particularly valuable for interdisciplinary
work, as Al models, such as LLMs, can
efficiently summarise and highlight key
findings from vast scientific literature and
facilitate the exploration of interdisciplinary
research, bridging gaps between different
fields (Barman et al., 2025; Eger et al,,
2025) . Additionally, graph-based systems
help map the relationships between
concepts and publications, allowing for
the identification of both foundational and
emerging works (Gu and Krenn, 2025b; Xu
et al.,, 2025).

Automated summarisation and
extraction - Al tools can autonomously
summarise abstracts of selected papers,
ensuring pertinence to research questions
(Sami et al., 2024). They can process
diverse unstructured and structured data to
uncover hidden patterns and insights within
scientific literature (Schryen et al., 2025).
Named-entity recognition and classifiers
can be used to extract specific entities

or concepts from articles (Bolafios et al.,
2024). These systems help scientists stay
up to date with new publications, identify
relevant findings, and quickly gain an
overview of a field.

Information extraction and
organisation — Beyond summaries,

Al is being used to extract structured
knowledge from papers automatically
(Bernasconi et al., 2022; Dagdelen et al.,
2024). An example is the Scite Assistant’s
Al-powered tool for reading research
tables and data (Lund and Shamsi, 2023).
Instead of manually examining articles

for specific data points or experimental
results, researchers can leverage Al to

pull out and organise those details (Hsu

et al., 2024). This is particularly valuable
in fields like pharmacology or clinical
research, where missing a critical data point
could significantly alter conclusions (Xu

et al,, 2025). By structuring methods and
outcomes from hundreds of papers, Al can
enable more efficient meta-analyses and
evidence aggregation.

2.2.2 CHALLENGES AND
LIMITATIONS

Despite advancements, challenges persist,
including data quality and coverage gaps,

bias in Al models influencing the visibility of
research, and scalability issues (Eger et al., 2025).
GenAl’s effectiveness depends on the specific
knowledge development activity in the review;
while helpful for identifying and synthesising
literature, it may fall short in critical analysis or
aggregating complex evidence (Schryen et al.,
2025). Some studies have shown inconsistencies
in performance for literature searches across
different Al tools (Lund and Shamsi, 2023;
Schryen et al., 2025). Relying on Al tools without
reading the actual papers can lead to the
invention of references or spurious correlations
(Buriak et al., 2023), a growing concern for
funding agencies and review committees

who have reported encountering non-existent
publications in submitted bibliographies .
Excessive reliance on LLMs for literature synthesis
can hinder the development and refinement of
conceptual frameworks, which are essential for
scientific education.

2.3 Construct a hypothesis

Al can play a crucial role in generating
hypotheses, a fundamental step in the scientific
discovery process (Abdel-Rehim et al., 2025;
Barman et al., 2025; Batista and Ross, 2024;
Eger et al., 2025; Liu et al., 2025; Misra and Kim,
2024). It can propose credible connections based
on existing literature, predict novel links using ML



models, suggest formal theoretical conjectures,
and even derive specific potential formulas
(Battleday and Gershman, 2024; Beel et al., 2025;
Luo et al., 2025). LLMs can generate ideas that
are plausibly novel and feasible, comparable to
those produced by human researchers (L. Li et
al., 2024). Agent-based systems, such as the Al
co-scientist, are specifically designed to automate
the entire research pipeline, including hypothesis
formulation and helping uncover new and original
knowledge, as well as to formulate demonstrably
novel research hypotheses and proposals
(Gottweis et al., 2025).

2.3.1 RECURRING AND EMERGING
TRENDS

— Literature-based hypothesis
generation - Al systems systems
can generate research hypotheses by
synthesising extensive literature and
identifying latent relationships (Gottweis
et al., 2025; Saeidnia et al., 2024). Multi-
agent systems leveraging knowledge
graphs and LLMs, like SciAgents, can
autonomously generate and refine
hypotheses, even revealing hidden
interdisciplinary relationships (Ghafarollahi
and Buehler, 2024). Al can be used to
design experimental stimuli or interview
questions, which are linked to hypothesis
formulation (Feng, 2024). In practice, the
same Al tools that identify research gaps
can also propose specific hypotheses. By
analysing patterns in scientific papers, Al
might suggest, for example, that a certain
protein could be a key regulator in a disease
(connecting two previously unrelated study
findings) (Cheerkoot-Jalim and Khedo, 2021;
Henry and Mclnnes, 2017).

— ML-driven link prediction - In many
fields, hypothesis generation can be framed
as a link prediction or pattern completion
problem (Krenn et al., 2023). These
predictions are essentially hypotheses
about cause-effect or interactions. A
concrete example is in drug discovery:
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ML models trained on known drug-target
interactions have proposed new candidate
drug molecules for specific targets (Dara et
al., 2022; Sadybekov and Katritch, 2023).
Notably, in early 2020, a DL approach
identified a novel antibiotic drug (later
named ‘halicin’) by predicting antibacterial
activity for molecules in a large chemical
library (Stokes et al., 2020). The model
generated the hypothesis that halicin
would be effective against certain resistant
bacteria, a hypothesis later confirmed
experimentally, showcasing Al’s ability to
hypothesise useful new therapeutics.

Al in theoretical discovery - Al has even
started contributing hypotheses in abstract
domains like mathematics (Jejjala et al,
2019; Lample and Charton, 2019; Raayoni
et al, 2021). In late 2021, DeepMind’s
team combined ML with human insight to
conjecture new mathematical theorems
(Davies et al., 2021). Their Al system
analysed massive datasets of mathematical
objects to spot patterns and suggested
conjectures in areas such as knot theory
and representation theory. A relevant
finding of the study revealed that Al can
aid in formulating hypotheses (conjectures)
even in fields with no experimental data,
by guiding human intuition toward fruitful
ideas.

Symbolic Al and hypothesis formation
- Al techniques (like automated reasoning
and symbolic regression) are being

used to formulate scientific laws or
hypotheses (Angelis et al., 2023; Reddy
and Shojaee, 2025). Instead of a human
guessing a functional form, symbolic
regression algorithms search the space of
mathematical expressions to fit data and
produce human-readable hypotheses (i.e.
equations) (Makke and Chawla, 2024). For
example, researchers have developed Al
methods that rediscovered Kepler’s third
law of planetary motion and Einstein’s
time-dilation formula by combining logical



reasoning with a small amount of data
(Cornelio et al., 2023). The past few years
have seen improvements in ensuring such
Al-generated hypotheses obey known
physics and are consistent with known
principles (Shin et al., 2024).

2.3.2 CHALLENGES AND
LIMITATIONS

Al systems trained on existing literature may
favour popular paths, potentially reinforcing
established research paradigms and neglecting
underrepresented directions (Eger et al., 2025;
Tang et al., 2025). Al-generated hypotheses

may lack transparency, making it difficult for
researchers to verify their scientific soundness or
underlying assumptions (Eger et al., 2025). There
is a critical concern that a considerable part of

Al-generated research documents are plagiarised,

bypassing detectors and not acknowledging
original sources (Gupta and Pruthi, 2025).
Reliance on Al might lead to a homogenisation of
ideas across populations (Gottweis et al., 2025).
Al seems more inclined to stimulate answers to
existing issues rather than generate new ones,

potentially slowing the expansion of knowledge by

inducing collective hill-climbing (Hao et al., 2024).

2.4 Test your hypothesis by
performing an experiment

Al is revolutionising the experimentation process
by enhancing the design and execution of
research activities (Albert and Billinger, 2025;
Bartolomeis et al., 2025; Q. Huang et al,, 2024;
Z. Liu et al,, 2024). By intelligently selecting and
automating experiments, Al enables researchers
to focus on the most promising avenues of
investigation. Its capabilities allow for the
operation of experiments with minimal human
intervention, providing real-time interpretation
of results (Stevenson et al., 2024; Yacoub et al,,
2022). This efficiency facilitates quicker testing
of hypotheses and allows for the exploration of
larger experimental domains than ever before.
Moreover, robotics combined with Al-driven
automation has simplified laboratory procedures,
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making it easier for scientists to conduct
complex studies (Rolnik, 2024). Al algorithms
significantly contribute to the advancement of
science by simulating experiments, predicting
outcomes, and optimising various conditions,
thereby accelerating scientific breakthroughs
(Feng, 2024). These tools also provide valuable
assistance in programming, enhancing the
implementation of statistical analyses (Goretti et
al.,, 2025). Additionally, specialised systems like
the ‘agent laboratory’ are designed to function
within automated research pipelines, further
simplifying the scientific process (Battleday and
Gershman, 2024; Beel et al., 2025; Schmidgall et
al.,, 2025; Tom et al., 2024).

2.4.1 RECURRING AND EMERGING
TRENDS

— Experiment design and optimisation
— Al techniques (including Bayesian
optimisation and reinforcement learning)
are used to design experiments that yield
maximal information (Dworschak et al.,
2022; Greenhill et al., 2020; Treloar et al.,
2022). Instead of exhaustive or random
trial-and-error, scientists can employ ML
to prioritise which experiments to run,
essentially testing the most promising
parts of a hypothesis first (Dang et al.,
2024; Mece et al., 2020). In materials
science and chemistry, this approach has
given rise to ‘self-driving labs’ (Tom et
al., 2024). For example, an autonomous
chemical lab can be set up as a closed-
loop system: an Al model proposes a set
of experimental conditions, a robotics
system runs the experiment and measures
results, and the Al learns from the outcome
to propose the next experiment. Recent
reports describe autonomous labs that can
execute 50-100 times more experiments
per day than a human¢ (Biron, 2023). By
operating 24/7 and adjusting protocols on
the fly, these Al-driven labs significantly
accelerate hypothesis testing optimisation

18 https://newscenter.lbl.gov/2023/04/17/meet-the-
autonomous-lab-of-the-future/.
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and free human scientists to focus on
designing high-level hypotheses (Delgado-
Licona and Abolhasani, 2023; Desai et al.,
2025). Moreover, Al frameworks support
automating tasks like hyperparameter
tuning (Czako et al,, 2021; Shawki et al.,
2021), as well as generating executable
code for experiments (Wills et al., 2024;
Fengxiang Zhao et al., 2024; Zhuang and
Lin, 2024).

Simulation and data generation - Al

is fundamentally changing the nature

of scientific experiments by enabling
large-scale simulations. It can be used to
simulate human behaviour for research
purposes, such as in survey research, online
experiments, and agent-based models
(Albert and Billinger, 2025; Bail, 2024;
Gurcan, 2024; Yiren Liu et al.,, 2025; Rosala
and Moran, 2024). Al can also generate
simulated or synthetic data, although only a
few biomedical researchers reported using
it for this purpose (Afonja et al., 2025; Goyal
and Mahmoud, 2024; Ruediger et al., 2024).
The ability to simulate known results with

Al may indicate functional abilities in data
generation and theory building (Afonja et al,,
2025; Christou, 2023; Lehr et al., 2024; R.

Li et al,, 2024). This is evident in fields like
weather forecasting (Conti, 2024), where Al
models can process billions of data points
more quickly than traditional physics-based
models, and in structural biology, where
models like AlphaFold accurately predict
protein structures (Jumper et al,, 2021). Al's
ability to analyse patterns from data also
allows it to be used to solve a wide range of
mathematical problems, from basic algebra
to advanced calculus (Davies et al,, 2021).

Controlled instruments - In large-
scale scientific experiments, such as
physics detectors, telescopes, and particle
accelerators, Al plays a crucial role in
managing complex instruments and
identifying noteworthy events (Jiao et al,
2024; Zubatiuk and Isayev, 2021). For

instance, particle physics experiments
employ ML models in real-time to decide
which collision events to record, a form of
hypothesis testing that involves retaining
data that might confirm a theory (Jiao et al,,
2024; Krenn et al,, 2022; Lai et al., 2022).
In astronomy, Al pipelines analyse telescope
data nightly to identify phenomena like
supernovae or new asteroids for follow-

up, effectively testing hypotheses about
transient events by catching them as they
happen (Fluke and Jacobs, 2020; K. Huang
et al., 2024; Kodi Ramanah et al,, 2022).
These applications show how Al increases
the responsiveness of experimental tests.

2.4.2 CHALLENGES AND
LIMITATIONS

The speed and volume at which Al can design

and execute experiments can lead to insufficient
ethical oversight and inadequate safety controls
(Eger et al., 2025; Jeon et al,, 2025; Seghier,
2025). There are concerns about Al models
fabricating data and studies, which can be
difficult to ascertain without significant time for
review (Kabir et al., 2025; Saeidnia et al., 2024).
Al models can also propagate coding errors and
biases present in their training data (Becker et

al., 2023; Kiicking et al., 2024; Straw, 2020).
Handling Al-generated hallucinations, such as in
citation creation for experimental methods, can
result in inaccurate or non-existent references (L.
Huang et al., 2025; Monge Roffarello et al., 2025).
Regarding the generation of code for experiments,
translating methodology into executable actions
remains a challenge for Al agents without
dedicated interfaces or tools (Becker et al., 2023;
Huang et al,, 2024).

2.5 Analysing data from
experimental results

Al tools are increasingly being utilised to assist in
data analysis and interpretation (Bi et al., 2024;
Drosos et al.,, 2024; Eger et al., 2025; X. Hu et al.,
2024; Liu et al., 2023; Rolnik, 2024; Wachinger
et al,, 2024). ML algorithms excel at identifying



patterns, correlations, and trends within large
datasets (Pal, 2023; Wasim and Zaheer, 2023).
This area of application is often referred to as ‘Al
as Quant’ (Weiskopf, 2024). Al can handle complex
datasets, which may enhance or even surpass
human cognitive abilities in examination (Musslick
et al,, 2025). Additionally, Al tools can aid in both
data cleaning and analysis (Binz et al., 2025;
Monge Roffarello et al., 2025; Zhu et al., 2025).

2.5.1 RECURRING AND EMERGING
TRENDS

— Automated data processing - Modern
scientific experiments and observations
often produce data on scales that
overwhelm traditional analysis (Pagliaro
and Sangiorgi, 2023). Al systems can
automate data collection and cleaning,
ensuring higher accuracy and consistency
(Rolnik, 2024; Zhu et al., 2025). They
enable efficient data processing, pattern
recognition, and knowledge extraction
from various sources (Lipkova et al., 2022;
Fei Zhao et al., 2024). Al can analyse
large volumes of text, audio, video or any
data to uncover patterns and trends in
cultural, historical, and social phenomena
(Rolnik, 2024; The Royal Society, 2024). In
quantitative analysis, Al methods like rule-
based learning, supervised learning, and
LLMs can assist with tasks like inductive
coding of qualitative data (Fengxiang Zhao
et al., 2024).

— Pattern recognition - Al has stepped
in as a robust pattern recogniser (Jalaian
and Bastian, 2023; Serey et al,, 2023). In
high-energy physics, for example, billions
of collision events are produced at the
LHC, far too many for humans to scrutinise
individually. Deep Neural Networks (DNNs)
are trained to recognise the fingerprints of
interesting particles within this deluge. An
Argonne Lab study used a Neural Network
(NN) autoencoder to sift through LHC data
and detect subtle anomalies that could
indicate new physics beyond the Standard
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Model (ATLAS Collaboration, 2024).
Similarly, in astronomy, DL has been used
to classify millions of galaxies and identify
new exoplanets. NASA’s ExoMiner NN
recently validated 301 new exoplanets from
Kepler telescope data in one large batch, by
learning to distinguish true planetary signals
from false positives (Valizadegan et al,,
2022). These successes highlight Al's ability
to analyse massive datasets efficiently,
uncovering patterns (e.g. new planets,
potential new particles, etc.) that would
have taken prohibitive human effort to find.

Advanced data mining and multivariate
analysis — Al enables scientists to analyse
data with many variables in ways traditional
statistics cannot (Kumar et al., 2023). For
instance, in genomics and systems biology,
ML models can integrate thousands of
features (such as genes, mutations, and
expression levels) to identify clusters or
predictive patterns related to disease (De La
Vega et al,, 2021; DeGroat et al,, 2023). In
climate science, DL models digest petabytes
of simulation output and observational
data to detect trends or extreme events
(Jiang et al., 2022; Salcedo-Sanz et al,
2024). What is crucial is that Al can model
highly complex, non-linear relationships

in data. This leads to novel discoveries:

ML analysis of seismic data has identified
previously unknown micro-earthquake
patterns (Mousavi and Beroza, 2023; Yang
et al,, 2021), and DL on network traffic has
revealed telltale signs of cosmic events,
such as identifying gravitational lensing
patterns in telescope images (Kim et al.,
2021). Al-driven data analysis typically
demonstrates increased sensitivity and
uncovers novel insights, as algorithms

can detect subtle signals that are often
overlooked by traditional analyses.

Automated interpretation and
understanding - Al-driven methods
increasingly support the interpretation
of scientific data by automating complex



analytical tasks (Gil et al., 2021; Sarker,
2022). In domains such as medical imaging
and microscopy, DL models not only

detect relevant features (such as tumours
in scans (Gharaibeh et al., 2022; Kao

and Yang, 2022)) but also quantify and
characterise them, enabling more efficient
and precise assessments (X. Li et al., 2024).
Similarly, in particle physics, ML algorithms
can infer physical properties, such as
charge or momentum, from raw detector
outputs, often outperforming traditional
reconstruction methods (Karagiorgi et al,
2022). In environmental sciences, Al-based
surrogate models emulate computationally
expensive simulations, such as climate

or fluid dynamics models, allowing for
real-time analysis of dynamic systems
(Emmerich et al.,, 2024; Jones et al., 2023).
Moreover, Al supports the integration of
quantitative and qualitative analyses, for
instance by semantically enriching social
media or experimental data and aligning

it with external sources such as literature
or code repositories (Bryda and Sadowski,
2024; Rietz and Maedche, 2021).

2.5.2 CHALLENGES AND
LIMITATIONS

Al tools are likely to make mistakes or hallucinate
in analysis (L. Huang et al., 2025). The use

of Al in data analysis, especially for complex

or nuanced data, carries risks of illusions of
understanding if contextual sensitivity and
multidisciplinary perspectives, often preserved
by qualitative approaches, are stripped out
(Messeri and Crockett, 2024; Weiskopf, 2024).

In this scenario, transparency and explainability
of Al models are crucial, as complex models can
obscure the process by which predictions are
made (Chowdhury et al., 2023; Mengaldo, 2025;
Walmsley, 2021). Over-reliance on Al analysis
could diminish researchers’ critical thinking
skills (Schemmer et al., 2023; Zhai et al., 2024).
Evaluating the reliability and trustworthiness of
Al results is crucial, necessitating validation and
a critical review by human experts (Tsamados et
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al., 2025). There are concerns about the potential
for over-concentration of Al research leading to
redundant innovation rather than novel insights
(Doshi and Hauser, 2024; Hao et al., 2024).

2.6 Draw conclusions based on
acceptance or rejection of the
hypothesis

Once data are analysed, scientists must draw
conclusions, as determining whether a hypothesis
is supported, and formulate theoretical
explanations. Al algorithms can assist researchers
in deriving meaningful conclusions based on

the patterns and trends identified in the data
analysis procedures (Pal, 2023; Wasim and Zaheer,
2023). Frameworks and systems like AIGS aim

to autonomously complete the entire research
process or contribute to theory building (Lehr et
al, 2024; Z. Liu et al., 2024). Al helps connect the
dots between data and theory. It can elevate raw
analysis to formal theory, assist in validating that
conclusions are causally sound and consistent
with known science (Burstein and LaFlair, 2024),
and even participate in the reasoning process
(Ghafarollahi and Buehler, 2024; X. Liu et al., 2024).
The result is that scientific findings can be reached
more rigorously and, at times, more creatively, with
Al offering a second pair of eyes to catch errors

or propose explanations that humans might miss
(Krenn et al., 2022; Wang et al., 2023).

2.6.1 RECURRING AND EMERGING
TRENDS

— Falsification and verification - Al
systems can be designed with explicit
falsification components to identify and
verify potential scientific discoveries based
on experimental results (K. Huang et al.,
2025; Z. Liu et al., 2024). The process of
falsification is considered central to Al-
generated science, built on experimentation
and aimed at fostering creativity.

— Causal inference and hypothesis
evaluation - Drawing correct conclusions
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often hinges on distinguishing correlation
from causation. Al is aiding scientists in
performing causal inference on complex
datasets (Chernozhukov et al., 2024;
Wang et al., 2022). Advanced methods can
suggest causal relationships that explain
the data. For example, Al algorithms have
been applied to epidemiological data to
infer causal links between risk factors
and outcomes, guiding conclusions about
disease etiology (Jacquot et al., 2023). In
fields like economics or social sciences,
where randomised trials are impractical,
ML-based causal models help researchers
conclude which factors truly have effects
(Scholkopf, 2022). Additionally, Al can

run counterfactual simulations: using
generative models to simulate what if
scenarios that test the robustness of
conclusions under different assumptions
(Kirfel et al., 2025).

Ensuring consistency and validating
conclusions - Al is also used as a
safeguard to check that new findings make
sense in the context of existing knowledge
(Cheong, 2024). Researchers have proposed
formal verification methods where an

Al system evaluates whether a learned
hypothesis (from an ML model) violates
known physical laws or constraints (Reddy
and Shojaee, 2025). This alignment with
scientific principles is essential as Al takes a
larger role in discovery, and tools are being
developed to integrate domain knowledge
as a constraint on Al-driven conclusions
(Gabriel, 2020; Reddy and Shojaee, 2025).
Moreover, by analysing statistical patterns
and metadata from published studies, Al
can estimate a study’s probability of being
true upon replication and foresee unreliable
results (Hong et al,, 2023; Ryan, 2020).

Human-Al collaborative reasoning -
Drawing conclusions often benefits from
explanation and reasoning, where Al

can assist via LLMs or knowledge-based
systems (Forer and Hope, 2024; Ifargan

et al,, 2025). LLMs, fine-tuned on scientific
knowledge, can assist researchers by
logically narrating the implications of the
results or by suggesting additional tests to
verify a conclusion (Cohen and Peled, 2025;
Singhi et al,, 2025). When grounded in data
and adequately verified, these models can
help researchers articulate conclusions
more clearly or consider alternative
interpretations.

2.6.2 CHALLENGES AND
LIMITATIONS

Despite its transformative potential, Al-assisted
research presents notable epistemological and
methodological limitations. In domains heavily
reliant on quantitative or large-scale data, Al can
foster a form of data centrism that privileges
inductive pattern recognition over theoretical
reasoning, weakening the dialectical interplay
between empirical evidence and conceptual
frameworks (Kumar et al., 2024; Patel, 2024).
Moreover, current Al systems often lack the
capacity for deep interpretation or contextual
judgment, making them adept at reproducing
established knowledge but poorly suited for
distinguishing between spurious correlations

and groundbreaking insights (Buriak et al., 2023;
Wang et al,, 2023). Paradoxically, the precision
afforded by Al tools can obscure rather than
clarify scientific understanding, raising concerns
about the depth and originality of conclusions
derived from such systems. Messeri and Crockett
(2024) warn that the proliferation of Al tools in
science risks introducing a phase of scientific
enquiry in which we produce more but understand
less, potentially leading to scientific monocultures
where certain methods and viewpoints dominate,
making science less innovative and more prone to
errors. For conclusions to be truly interdisciplinary
and robust, human scientists must retain critical
responsibilities for reviewing, critiquing, validating
theories, identifying gaps, and extending
knowledge, acting as directors and overseers of
Al-generated insights.



2.7 Communicate results

Al-based systems are influencing how scientists
communicate. When used responsibly, these
tools can greatly aid researchers in scientific
writing, editing, and publishing (Eger et al., 2025;
Goretti et al., 2025; Jaakkola, 2024; Melliti, 2024;
Ruediger et al., 2024; Zhuang et al., 2025). They
are instrumental in streamlining tasks such as
manuscript formatting, reference expansion,
checking grammar, and enhancing clarity (Feng,
2024; Lin, 2025; H. Wu et al., 2023). Al can
assist with language tutoring for non-native
English speakers (Pang et al., 2025), as well as in
drafting papers, generating specific sections like
titles, abstracts, and related work, and assisting
with citations (Salvagno et al., 2023; Wallwork,
2024). LLM-based systems are being explored
for automating the whole paper-writing process
(Liang et al., 2024).

2.7.1 RECURRING AND EMERGING
TRENDS

— Al-assisted scientific writing — Al
tools , particularly LLMs, are increasingly
employed as writing assistants throughout
the scientific communication process. By
supporting researchers in overcoming
initial writing barriers, refining grammar,
and improving argumentation structure,
these systems help streamline manuscript
preparation and enhance textual clarity
(Liang et al., 2024; Lin, 2025; Pang et al,,
2025; Salvagno et al., 2023; Wallwork,
2024; H. Wu et al., 2023). Applications
range from summarising related work to
translating technical language into more
accessible prose, thereby accelerating the
writing process. Some platforms extend
these capabilities toward fully automated
drafting and documentation, including code
annotation (Binz et al., 2025; Dou et al.,
2024). Scientists report that these tools
help in composing readable introductions,
summarising related work, or converting
technical jargon into clearer language
(Yuhan Liu et al,, 2025). The overall result

34

is often quicker writing and enhanced

clarity, although authors should thoroughly
fact-check Al-generated text for accuracy
(Augenstein et al., 2024; Dierickx et al., 2024;
Giarelis et al., 2024). This trend has been

so rapid that it has had an unprecedented
impact on scientific writing, surpassing

even the effect of major global events on
language (Kobak et al., 2025). The academic
community is now grappling with policies for
disclosure and proper use of Al in manuscript
preparation (Bhavsar et al., 2025).

Summarisation and translation - Al
is also used to communicate results to
broader audiences. For example, some
journals and conferences utilise Al
summarisers to generate plain-language
summaries of technical papers for press
releases (Glickman and Zhang, 2024;
Markowitz, 2024). Additionally, machine
translation powered by Al (e.g. DeeplL,
Google’s translation algorithms) enables
research written in one language to be
more easily understood by non-native
speakers (Li et al., 2025; Polakova and
Klimova, 2023), breaking down language
barriers in science communication and
allowing findings to reach all communities.

Enhanced visualisation - Communicating
scientific results often involves charts,
graphs and images. Al tools can assist

in generating more effective visual
communications (Dibia, 2023; Maddigan
and Susnjak, 2023; A. Wu et al., 2022; Wu
et al., 2024), for instance, by automatically
selecting the best chart types or even
generating schematic diagrams from data.
There are experimental systems where a
scientist can input raw data, and an Al tool
suggests insightful ways to plot it or even
creates graphical abstracts (A. Wu et al,,
2022).

Quality control integrity in publishing
- Alongside generating text and images,
Al is utilised by journals and the scientific



community to review communications.
Plagiarism-detection software has long
been used to compare manuscripts against
databases (Gupta and Pruthi, 2025;
Pudasaini et al., 2024). More recently, Al
tools like Proofig have been developed

to scan submitted papers for image
manipulation or duplication, a known issue
in some published works (Van Noorden and
Perkel, 2023). These algorithms can rapidly
compare all figures in a paper to spot if the
same microscopy photo has been reused or
tampered with. Similarly, there are Al-based
tools to try to detect if a piece of text was
likely generated by an LLM (Boutadjine et
al., 2025; Elkhatat et al., 2023), though
reliably detecting Al-written text remains
challenging.

2.7.2 CHALLENGES AND
LIMITATIONS

A significant concern is the potential for Al models
to hallucinate or fabricate citations and textual
content, leading to the dissemination of false
information (Eger et al., 2025; Elali and Rachid,
2023; L. Huang et al., 2025; Kabir et al., 2025;
Monge Roffarello et al., 2025; Walters and Wilder,
2023). Al-generated text can be challenging to
distinguish from human-written text and may
bypass plagiarism detectors (Gupta and Pruthi,
2025; Weber-Wulff et al., 2023). Over-reliance

on Al can lead to superficial or banal writing that
lacks creativity and critical analysis (Buriak et al.,
2023; Jaakkola, 2024, Zhai et al., 2024). Frequent
use of LLMs might lead to similar paragraph
structures and writing styles across papers

(Bao et al., 2025; Geng and Trotta, 2024; Melliti,
2024; Mufioz-Ortiz et al., 2024; Wenger and
Kenett, 2025). Moreover, ethical considerations
require transparent documentation of Al use. In
peer review, Al can introduce biases, may not be
accurate in assessing research quality, and can
be exploited for generating irrelevant comments
(Mollaki, 2024; Pataranutaporn et al., 2025;
Seghier, 2025; Yang et al., 2025).
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2.8 Build scientific community

Science is fundamentally a social endeavour,
where researchers collaborate, share knowledge,
peer review each other’s work, and build on
collective insights. Al is starting to play a role

in shaping and supporting the communities

and networks of science, such as by facilitating
knowledge sharing and interdisciplinary work
within and across scientific fields (Beck et al.,
2022; Berens et al., 2023; X. Hu et al,, 2025; Lu,
2024; Xie et al., 2024).

2.8.1 RECURRING AND EMERGING
TRENDS

— Collaboration networks and partner
matching - The same network analysis
and recommendation algorithms that tech
companies use can be applied to academic
data (papers, citations, authors) to identify
potential collaborations (Lathabai et al.,
2022; C. Liu et al., 2024). By analysing
publication and citation networks, Al
can identify emerging research groups,
interdisciplinary connections, or even
recommend mentors and mentees (Resce
et al., 2022). For instance, if two labs
in different countries are working on
complementary aspects of a problem, Al
might flag this connection, helping to form
new collaborations.

— Knowledge repositories and shared
databases - Al is enabling more dynamic
and structured ways for communities
to share knowledge. One example is the
Open Research Knowledge Graph (ORKG)
(Auer et al., 2021), a platform that uses
AI/NLP to convert published findings into
a knowledge graph of concepts, methods,
and results. Over the last five years, ORKG
has grown into a vibrant platform that
enhances the accessibility and visibility of
scientific research, by turning unstructured
papers into a structured, queryable
knowledge base (Oelen et al., 2024; Stocker
et al,, 2023). This allows communities



to contribute and curate knowledge in a
collective resource, making it easier to find
related work and compare results. Such Al-
curated knowledge graphs essentially serve
as living review papers that the community
builds together, aided by machine
extraction of facts and relationships

(Auer et al., 2025). This strengthens the
community’s shared understanding and
helps avoid duplication of effort.

— Citizen science and public engagement
Al is also influencing how wider
communities, including non-professional
scientists, participate in research. In citizen
science projects, volunteers team up to
collect or classify data (e.q. identifying
galaxies, transcribing texts, monitoring
wildlife) (Abdul-Rahman et al.,, 2025;
Fortson et al.,, 2024). Al is being integrated
to support these volunteers, for example, by
pre-filtering data so that humans focus on
the most interesting cases, or by validating
and aggregating volunteer contributions
(Kumar, 2025). For instance, on the popular
Zooniverse® citizen science platform, Al
image classifiers help direct volunteers
to images likely containing the objects of
interest (such as rare galaxies), making their
efforts more impactful. This synergy allows
citizen scientists to achieve more, building
a community where human intuition and Al
efficiency combine. Moreover, Al chatbots
and assistants can answer basic questions
for community members, lowering the
barrier for public participation in scientific
discussions (Kajiwara and Kawabata, 2024).

— Peer review and community evaluation
- The peer-review process, a cornerstone of
scientific communities, is beginning to use
Al for support, as previously highlighted.
Some journals and conferences deploy NLP
tools to match manuscripts with suitable
reviewers by analysing the content of
submissions and the expertise of reviewers.
Additionally, Al text analysis can help spot

19 https://www.zooniverse.ora/.
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potential issues in submissions (such as
plagiarism checks, scanning for statistical
errors or unusual reporting patterns that
might indicate problems). While the final
judgment is left to human reviewers and
editors, Al can lighten their load by catching
obvious problems and allowing them to
focus on deeper content issues (Alnaimat et
al, 2025; J. Q. J. Liu et al., 2024).

— Community involvement and
governance — The academic community
needs to prepare for the shift brought by Al
and lead the discussion on how Al should
be integrated (Chakravorti et al., 2025;
Kohnke et al., 2025; McDonald et al.,, 2025;
Vieriu and Petrea, 2025; Walter, 2024).
This involves actively engaging with tools,
following advancements, contributing to
development, and defining appropriate
use to ensure Al aligns with rigorous
scientific principles (Huerta et al., 2023).
Collaboration between social scientists and
Al researchers is considered essential. There
is a call for collaborative efforts among
researchers, policymakers, and generative
Al companies to create living guidelines
for responsible Al use.2 Policies on Al use
should be developed in collaboration with
experts and stakeholders like peer reviewers
and program chairs. Large systematic
review institutions could officially make Al
part of practice by providing guidelines.

2.8.2 CHALLENGES AND
LIMITATIONS

The rapid pace of Al development presents

a challenge for policy and regulation. There

are risks when using tools created by private
companies,? as their goals may diverge from
science and their models can be less transparent
than academic ones (He et al., 2023; Pal, 2023;
Resnik and Hosseini, 2025). The increasing

20 https://european-research-area.ec.europa.eu/news/
living-quidelines-responsible-use-generative-ai-research-
published.

21 https://www.nature.com/articles/d41586-024-02757-z.
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autonomy of Al systems necessitates clear
accountability and responsibility for developers,
researchers, and users (Cano, 2025). Distinct
approaches and focus areas exist between the Al
and science communities regarding Al integration
(Zhang et al., 2021). Training the next generation
of scientists requires not only technical education
but also exposure to scholarship in Science and
Technology Studies (STS), social epistemology, and
philosophy of science to navigate Al’s epistemic
risks (Alvarado, 2023; Coeckelbergh, 2025).
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3
DEEP DIVES



The breadth and diversity of the scientific
community render the definition of the scientific
method itself difficult to pinpoint. Indeed, what is
understood as the use of Artificial Intelligence (Al)
can be multi-faceted. In this context, to decipher
the intricacies of Al as a tool within the context of
the scientific method, an examination of different
domains is pertinent to be performed. Across the
numerous different research areas, specific deep
dives were identified and chosen for their distinct
ways of using Al as part of experimentation.

The three chosen domains were selected from
among those that, in recent years, have garnered
both significant attention and interest, owing

to technological advancements in the field, and
significant funding for research progression:

— Protein structure prediction (Section 3.1)
— Material discovery (Section 3.2)

— Ancient site discovery and virtual
restoration of inscriptions (Section 3.3)

The inclusion of three distinct research fields not
only underline how the same technology can be
modified and applied across different application
areas and disciplines but also showcase common
needs of the scientific community. Within each
of these domains, the field is described along
with its challenges and opportunities, with
presentations of model architectures, databases,
and infrastructural needs. The analysis is

complemented by an investigation, within each
research area, of the Al usage, intended as

the engagement of the scientific community
with the technology, through publications of
academic contributions, including journal articles,
conference papers and literature reviews. This
analysis follows the methodology established by
the divinAl project (see Section 1.3).

3.1 Protein structure prediction

In 2024, the Nobel Prize in Chemistry recognised
a scientific milestone in the structural biology
field with transformative potential for life
sciences: the accurate prediction of the three-
dimensional (3D) structure of proteins from their
string of amino acids, powered by Al.22 Structural
biology is the study of how biological molecules
such as proteins and DNA are built and shaped

in three dimensions, much like the architecture

of tiny molecular buildings. Determining the 3D
structure, or simply the structure, of a protein is
crucial, as this 3D conformation enables proteins
to perform essential functions within living
organisms (Martin et al., 1998). Knowing the
structures of proteins allow us to understand how
they work, or fail to work, in health and disease
(Dobson, 2003), enabling the development of
targeted therapies and more effective biomedical
interventions (Wei and McCammon, 2024).

22 https://www.nobelprize.org/prizes/chemistry/2024/press-
release/.

Figure 17. A protein can consist of everything from tens of amino acids to several thousand. The string of amino acids
folds into a three-dimensional structure that is decisive for the protein’s function.

Source: Johan Jarnestad, Popular information. NobelPrize.org. Nobel Prize Outreach 2025.
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For years, , determining the structure of a single
protein could take months or even years of
laboratory work using complex and expensive
techniques like X-ray crystallography or nuclear
magnetic resonance spectroscopy (Ledford,
2010). Today, thanks to Al, these structures

can be predicted with remarkable accuracy
and speed. This revolution was catalysed by
the convergence of a long-standing, open, and
collaborative initiative known as the Critical
Assessment of Structure Prediction (CASP), a
global benchmarking effort that, since 1994,
has brought together researchers to test and
improve protein structure prediction methods
(Moult et al., 1995), with rapid advances in
computing technology and the accumulation of
comprehensive experimental protein data.

In 2020, a major leap occurred when AlphaFold2,
developed by DeepMind (a Google subsidiary),
dramatically outperformed previous approaches,
achieving around 90% accuracy (near-
experimental accuracy) in predicting a challenging
set of protein structures (Kryshtafovych et

al,, 2021). By the next round in 2022, most
successful participating teams had adopted
AlphaFold2-based methods, marking a turning
point in the field (Kryshtafovych et al., 2023).

In parallel, these advances also enabled more
accurate design of synthetic proteins (i.e.
engineered molecules with new or enhanced
functions), opening new possibilities in therapeutic
innovation and biotechnology (Anishchenko et al.,
2021).

In a remarkably short span of time after
AlphaFold2’s debut, the Nobel Prize recognised
both the developers of AlphaFold2 (Demis
Hassabis and John Jumper) alongside David
Baker, a pioneer in protein engineering, for their
complementary contributions to structural
prediction and synthetic biology (Callaway,
2024). Together, their work is driving a new era
in biomedicine, accelerating discovery, enhancing
our understanding of disease mechanisms, and
unlocking innovative biotechnological applications
(Kovalevskiy et al., 2024; Varadi and Velankar,
2023). While the benefits are clear, this shift
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also presents challenges. These include growing
infrastructure demands resulting from the
increasing complexity and size of Al model
architectures, and the need for extensive, high-
quality data.

This deep dive offers an overview of how Al is
accelerating scientific progress in structural
biology, highlighting both the opportunities and
limitations as well as challenges that come with
this rapid transformation.

3.1.1 DATA, MODELS AND
INFRASTRUCTURE

The success of the advances in deciphering
protein structure prediction is rooted in open
science, from the availability of the training
data to the open-source offering of models and
prediction web servers.

Firstly, the key models that have driven
transformational progress in the field are
examined. Subsequently, the computational
resources that have made large-scale predictions
feasible are discussed. Finally, an examination of
the datasets that have enabled effective training
and validation of these models is conducted.

One of the most notable aspects of recent
advances in protein structure prediction is

the diversity of Al architectures now being
applied to this complex scientific problem. In
such a scenario, especially since the release of
AlphaFold2, an improved version of the original
AlphaFold, new strategies have explored a
range of Deep Learning (DL) models, each with
different strengths depending on the use case,
available data, and computational resources.
Understanding these architectural differences
helps explain why no single model can be
considered the ‘best’ for all situations. For clarity,
protein structure prediction models have been
grouped into three broad categories:

1. Evolutionary-based models.
Evolutionary-based models, including
AlphaFold2 (Jumper et al., 2021),



RoseTTAFold (Baek et al., 2021), and
OpenFold (Ahdritz et al., 2024), predict
protein structures by combining the target
protein’s sequence with evolutionary
information extracted from Multiple
Sequence Alignments (MSAs) and structural
templates derived from previously solved
3D structures of related proteins. MSAs
capture evolutionary conservation that
often reflects key structural features, while
structural templates provide concrete 3D
examples that constrain predictions. These
models leverage transformer architectures
(Vaswani et al., 2023), which excel at
modelling sequential data and capturing
long-range dependencies, enabling them

to learn complex relationships both within
the target sequence and across related
sequences in the MSA and structural
templates (Jumper et al., 2021). This
approach delivers state-of-the-art accuracy
not only for proteins with many known
related sequences but also for those

with limited evolutionary data, as DL can
detect subtle motifs and generalise from
large training datasets. However, these
models are computationally intensive to
run; generating MSAs and finding suitable
templates require significant compute time
and memory.z

2. Protein language models. A growing
class of models known as protein language
models, including ESMFold (Lin et al,, 2023),
OmegaFold (R. Wu et al., 2022), IgFold
(Ruffolo et al., 2023), pLM-BLAST (Kaminski
et al., 2023), and EMBER3D (Weissenow
et al., 2022), have the characteristic of
eliminating the need for MSAs. Instead,
they treat protein sequences like natural
language, using transformer-based
architectures trained on large corpora
of protein sequences to learn structural
patterns directly from sequence data.
These models are significantly faster and
easier to scale across large datasets (Lin

23 https://elearning.vib.be/courses/alphafold/lessons/
alphafold-on-the-hpc/topic/computational-limits/.
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et al,, 2023), making them ideal for rapid
screening or exploratory research. The
trade-off is that they typically achieve lower
structural accuracy compared to MSA-
based models (Lin et al., 2023), although
they show advantages for achieving higher
accuracy for newly design or orphan
proteins, which are poorly represented in
the training data of evolutionary-based
methods (Chowdhury et al., 2022).

3. Biomolecular interaction models. A set
of recent models, such as RoseTTAFoldNA
(Baek et al., 2021), AlphaFold3 (Abramson
et al,, 2024), Boltz-1 (Wohlwend et al,,
2024) and Boltz-2 (Passaro et al.,, 2025)
expands the prediction task of evolutionary-
based models to include molecular
interactions between proteins and with DNA,
RNA, or small molecules. These models
aim to reflect the more realistic, multi-
molecular context in which proteins function.
By predicting the structure of molecular
assemblies, they offer valuable insights into
biological mechanisms. However, this added
complexity comes with higher data and
computational demands, and some models
in this category are not fully open source
(Passaro et al., 2025).

In order to highlight the diversity of approaches
per model category, in addition to the models
mentioned above, Table 2 showcases a non-
exhaustive selection of models from each
category, chosen based on their scientific impact,
methodological novelty or widespread usage in
the research community. While it is beyond the
scope of this use case to classify these models
as foundation models or not, some insights are
provided that might help navigate this aspect.
Evolutionary-based models are in essence task-
specific systems for structure prediction, and

the field does not adopt the ‘foundation model’
terminology, although some authors regard them
as ‘foundation models’ for protein-structure-
centric tasks since they can be fine-tuned for
downstream applications such as protein design
(Jue Wang et al., 2024). Protein language models


https://elearning.vib.be/courses/alphafold/lessons/alphafold-on-the-hpc/topic/computational-limits/
https://elearning.vib.be/courses/alphafold/lessons/alphafold-on-the-hpc/topic/computational-limits/

more closely resemble foundation models since
they are trained on massive protein sequence
datasets in a self-supervised manner and learn
general representations applicable to multiple
downstream tasks including structure prediction.
For biomolecular interaction models, while most

are task-specific systems, emerging models

are becoming more powerful and general, as
exemplified by Boltz-2, which distinguishes itself
as a general platform for biomolecular modelling,
positioning itself as a ‘biomolecular foundation
model.

Table 2. Overview of representative Al models for protein structure prediction and related biomolecular modelling.
Models are grouped by methodological approach: evolutionary-based models, protein language models, and
models targeting biomolecular interactions. Key characteristics, open-source availability, and country/region of the
corresponding author (used as proxy for region) are also listed.

pe aracte ode Ope 0 e Reqio
AlphaFold2 Y UK | (Jumper et al., 2021)
High accuracy, |RoseTTAFold Y US |(Baek et al., 2021)
Evolutionary- slower, needs OpenFold Y US |(Ahdritz et al., 2024)
based highly curated |FastFold Y SG |(Cheng et al., 2023)
data LightRoseTTA Y CN [(X. Wang et al., 2025)
ScaleFold Y CN [(F. Zhu et al., 2024)
ESMFold Y US |(Lin et al., 2023)
ESM2-15B Y US |(Lin et al., 2023)
) ProstT5 Y EU |(Heinzinger et al., 2024)
rars;i';‘ge E?thairl‘s ece |OmegaFold Y US |(R.Wu et al, 2022)
’ IgFold Y US |(Ruffolo et al., 2023)
models accurate ——
pLM-BLAST Y EU |(Kaminski et al., 2023)
EMBER3D Y EU |(Weissenow et al., 2022)
RoseTTAFoldNA Y US |(Baek et al., 2024)
Broader biologi- [AlphaFold3 N UK |(Abramson et al., 2024)
Biomolecular cal scope, more |Chai-1 Y US |(Boitreaud et al., 2024)
interaction data complexity, AlphaFold-Multimer Y UK |[(Evans et al., 2022)
computationally |Boltz-1 Y US |(Wohlwend et al., 2024)
intensive Boltz-2 Y US |(Passaro et al., 2025)

Source: JRC’s own elaboration.

After a comprehensive examination of recent
advances in protein structure prediction models,
attention now turns to the computational
infrastructure that facilitates these developments.
It is important to distinguish between the
infrastructure required to train these models and
that needed to run them once developed. Training
DL models for protein structure prediction,

given the complexity of the problem, which is
considered Nondeterministic Polynomial-hard
(Rosignoli et al., 2025), demands access to high
performance computing environments equipped
with powerful CPUs, advanced GPUs, and the
capacity to process massive datasets efficiently

42

(Cheng et al., 2023). The resource cost of training
a model is reflected in the time taken in addition
to the number and type of devices used.

Examples of different models and their respective
resource cost are shown in Table 3 and Figure 18.

A characteristic comparison can be seen between
RoseTTAFold and LightRoseTTA. The former, a model
of 130 million parameters required an approximate
5760 GPU hours during training, while LightRoseTTA,
at a total of 1.4 million parameters was trained at
168 GPU hours (X. Wang et al,, 2025). The variability
in the hardware and training time for each model
reflects not only a financial cost, but also an



environmental impact. Thus, there is a further
motivation to be targeting the development of
models of high performance and smaller size.

In contrast to training, the infrastructure

required to use pre-trained models has become
increasingly accessible, with web servers able

to run models even for users with limited local
computing power. This has resulted in the creation
of model-as-a-service, such as the case of
AlphaFold2 instance provided by the Centre for
Education, Research and Innovation in Information
and Communication Technologies (CERIT) in

the Czech Republic, ColabFold? or AlphaFold3
server.2 From a user’s perspective, a laptop can
submit jobs via a web Ul; however, the compute
and memory footprints are still borne by the
remote infrastructure. Consequently, accessibility
for end-users and the need for substantial
investment are not contradictory: these ready-
to-use services depend on continued expansion
of GPU-rich HPC/AI facilities to meet growing
inference demand in science.

24 https://www.cerit-sc.cz/infrastructure-services/tools-and-
applications/alphafold.

25 https://colab.research.google.com/github/sokrypton/
ColabFold/blob/main/AlphaFold2.ipynb.

26 https://alphafoldserver.com.

Table 3. Comparative overview of selected protein structure prediction models. This illustrates the range from large-
scale, resource-intensive models (e.g. AlphaFold) to lighter, more accessible implementations (e.g. LightRoseTTA),
highlighting differences in hardware configurations, total training time, and compute resources consumed.

ks Jrdnae ST -
AlphaFold2 128 x TPUv3 11 days 33,792 TPU hours
OpenFold 128 x NVIDIA A100 GPUs | 8.39 days 25,774 GPU hours
FastFold 256 x NVIDIA A100 GPUs 2.81 days 20,738 GPU hours
RoseTTAFold 8 x NVIDIA V100 GPUs 30 days 5,760 GPU hours
LightRoseTTA 1 x NVIDIA RTX 3090 GPU | 7 days 168 GPU hours

Source: JRC’s own elaboration based on literature contributions (Cheng et al, 2023; X. Wang et al, 2025).

Figure 18. Computation costs for various protein structure prediction models, defined in FLOPs. For models with
available hardware information during training, FLOPs were calculated using the method described by Epoch Al’s

‘Data on Al Models’.#’

1023 -
Type ® ESM2-158
® Evolutionary-based
® Protein language models
Biomolecular Interaction Omega PLM (in OmegaFold)
102 4 J
CHAI-1
AlphaFold-Multimer
o [ )
g Alphafold2 ® Scalefold
@ 1074 RoseTTaFoldNA
3 ® OpenFold
3 FastFold
)
=
:% 10% ® Alphafold ® RoseTTaFold
=
" LightRoseTTa
10 4 °
®|gFold
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Year

Source: JRC’s own elaboration based on Epoch Al’s ‘Data on Al models’.

27 https://epoch.ai/data/ai-models.
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When software is released to the public, three
key criteria are considered: accessibility, user-
friendliness, and ease of understanding.

An analysis of the choices made in distributing
protein structure prediction tools (Figure 19)
was conducted, drawing on insights from
Rosignoli et al. (2025). It was found that
Graphical User Interfaces (GUIs), designed with
UX/UI best practices, significantly enhance
accessibility and ease of use. The analysis
revealed that models were most often released
via web servers, which offer high accessibility
but may limit user control. Command-line

tools remain popular due to their flexibility

and efficiency in batch processing. In contrast,
desktop applications are less frequently used,
likely due to cross-platform compatibility issues,
even though they provide greater control and
independence from server-based limitations.

Figure 19. Overview of tools retrieved from
folding’ topic tag in the Bio.Tools database.

‘Protein

Web application

Command-line to0| -——
Database portal -
Library e
Desktop application s
Script
Web service 1
Workflow 4a
Plug-in &
Suite 4
Workbench -

Bioinformatics portal
Web api 1

mmm all tools
cross-platform

100
count

50

150

Source: JRC’s own elaboration based on data from the Bio.

Tools database (Ison et al,, 2019).

Beyond computational infrastructure, the quality and accessibility of data are key to the performance
of protein structure prediction models. Two main types of data underpin this field: experimental data
and predicted data (see Table 4). Experimental data, derived from real-world measurements, forms the
foundation for model training, validation, and benchmarking.

Table 4. Overview of key datasets relevant to protein folding and structure prediction. Where available, the size of

each dataset is an estimation.

No. of protein

Type Dataset Size Description Base
structure
PDB 240K 60 GB 3D structure | Global [(Ormo et al., 1996)
Pfam . . (Paysan-Lafosse et al.,
(v.33.1) 47M 141 GB | Protein families | UK, EU 2025)
Experi- Scop N/A N/A StI’L'IC'tUI’E'll UK, EU (Andreeva et al., 2020,
mental classification 2014)
Extended (Chandonia et al., 2022;
>COPe N/A 86 MB version of SCOP us Fox et al., 2014)
CATH43 N/A 1073 | Hierarchical |\, | qiit00 ot al, 2021)
MB classification
Alpha- (Jumper et al,, 2021;
FoldDB 214M 23 TB | 3D structures UK varadi et al, 2022a)
Predicted ESM Metagenomic
Metagen- 772M 15TB protein US |(Linetal, 2023)
omic Atlas structures
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No. of protein

Type Dataset Size Description Base
structure
UniProtKB/ 590 UK, EU, | (The UniProt Consortium,
Swiss-Prot | 200K mg |Knowledgebase| ' ') 5055
UniProtKB/ UK, EU, | (The UniProt Consortium,
TrEMBL 2.29M 146 GB |Knowledge base CH. US |2025)

769 Clustered sets | UK, EU, [(The UniProt Consortium,
GB of sequences | CH, US |2025)
UK, EU, | (The UniProt Consortium,

UniRef100 314M

UniRef90 150M 34 GB | 90% identity CH. US |2025)
. 10.3 . . UK, EU, | (The UniProt Consortium,
UniRef50 53M GB 50% identity CH. US |2025)
UniParc 5.28M 106 GB Sequence UK, EU, | (The UniProt Consortium,
Both CH, US |2025)
(Jumper et al,, 2021;
BFD > 5B 272 GB Sequgnce KR Ste?negger et al, "20.19;
profile Steinegger and Séding,
2018)
Microbiome-
derived
MGNify 2.4B 165 GB| sequence data UK |(Richardson et al., 2023)
and predicted
structures
Clustered
Uniclust30 N/A 6.6 GB protein EU [(Mirdita et al., 2017)
sequences

Source: JRC’s own elaboration based on literature contributions (Hu et al, 2022).

Significant efforts by the scientific community
have led to the collection and curation of this data
into publicly available repositories, most notably
the Protein Data Bank (PDB)%= (Ormo et al., 1996)
a database of experimentally determined protein
structures, which contained nearly 240,000
structures as of June 2025. The database is
maintained by the Worldwide Protein Data Bank
(wwPDB), whose members are; the Research
Collaboratory for Structural Bioinformatics
Protein Data Bank (RCSB PDB), which acts as

the maintainer of the archive, the Protein Data
Bank in Europe (PDBe), the Protein Data Bank

archive-maintaining organisation, which makes
the data available to all users.?® This makes the
wwPDB a ‘data publisher’ model for Al-ready
science: it aggregates primary experimental
results, standardises metadata/formats and
provides stable, public access, which are practices
that have accelerated structure-aware Al.

Among the key partners of the PDB is the European
Molecular Biology Laboratory (EMBL),* a leading
life sciences research organisation. It focuses on
fundamental research, technology development,
and training to advance understanding of biological

Japan (PDB;j), the Biological Magnetic Resonance
Data Bank (BMRB) and the Electron Microscopy
Data Bank (EMDB). The experimental data from
the research community is sent to one of the
member organisations and processed at that
level. Following processing, the data reaches the

28 https://www.ebi.ac.uk/pdbe/.
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systems. The EMBL plays a fundamental role

in data activities, being a key partner of the
most important scientific datasets, like the PDB,
fundamental for the development of AlphaFold2

2% https://www.ebi.ac.uk/pdbe/news/wwpdb-charter-full-
and-associate-members/.

30 https://www.embl.org/.



https://www.ebi.ac.uk/pdbe/
https://www.ebi.ac.uk/pdbe/news/wwpdb-charter-full-and-associate-members/
https://www.ebi.ac.uk/pdbe/news/wwpdb-charter-full-and-associate-members/
https://www.embl.org/

(Jumper et al,, 2021). The EMBL embraces Al as a
powerful tool that is and will continue to fast-track
scientific discovery and it has developed its own

Al strategy. Similarly, other research institutions
are also leveraging Al to drive innovation in
biomedicine. For instance, AITHYRA3 is a pioneering
research institute established by the Austrian
Academy of Sciences to advance biomedicine
through artificial intelligence. Launched in 2024
with a €150 million grant from the Boehringer
Ingelheim Foundation, it aims to revolutionise
disease understanding and treatment development
by integrating Al early in biomedical research
processes. The institute emphasises open-access
principles, ensuring its research data is freely
available to the global scientific community.

In addition, large biological sequence databases,
such as UniProt (The UniProt Consortium, 2025),
MGnify (Richardson et al., 2023) and Big Fantastic
Database (BFD) (Jumper et al., 2021; Steinegger
et al,, 2019; Steinegger and Séding, 2018), play a
crucial role by providing the amino acid sequences
that serve as input for protein structure prediction
models. UniProt is coordinated by the EMBL’s
European Bioinformatics Institute (EMBL-EBI)

in the UK, the Swiss Institute of Bioinformatics
(SIB) in Switzerland, and the Protein Information
Resource (PIR) in the US. MGnify is also based at
the EBI in the UK and focuses on metagenomic
data analysis. The BFD repository, although not
tied to a specific location, is a collaborative effort
supporting large-scale computational projects with
extensive sequence data. Unlike the PDB, which
focuses on experimentally determined protein
structures and often involves meticulous manual
curation, the sequence databases may not always
undergo the same level of manual oversight.
Instead, they rely heavily on automated processes
to compile vast amounts of sequence data from
various sources. This approach allows them to
quickly incorporate new sequences, keeping

pace with the rapid advances in sequencing
technologies and the ever-expanding volume of
genomic data. However, it also means that the
data might include redundancies or errors that
require further validation and curation. Despite

31 https://www.oeaw.ac.at/aithyra.
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these challenges, these sequence repositories
are invaluable resources for researchers, offering
a comprehensive and up-to-date collection of
amino acid sequences essential for advancing
computational biology and bioinformatics.

With the advent of AlphaFold2 and other recent
methods (see Table 2), it is now possible to
generate structural predictions at scale, including
for many proteins that previously lacked resolved
structures. For example, the AlphaFold Protein
Structure Database (Jumper et al,, 2021),
developed by DeepMind and EMBL-EBI, includes
over 200 million predicted protein structures,
covering nearly all proteins from 48 species. It is
important to know that they vary in quality (Akdel
et al,, 2022), and are not always a substitute

for high-resolution experimental data. However,
they significantly complement experimentally
determined structures, narrowing the structural
knowledge gap, especially for the human proteins
(Porta-Pardo et al., 2022). Another example is the
ESM Metagenomic Atlas (Lin et al., 2023), which
contains over 772 million predicted structures.
The ESM Metagenomic Atlas is hosted by Meta,

in the US. Given the diverse array of datasets
and databases available, standardisation
becomes essential. The 3D-Beacons initiative,
hosted by EMBL-EBI, unifies predicted and
experimental structure models from various of
the aforementioned sources (PDBe, AlphaFold DB,
SWISS-MODEL, among others) into a common
framework with standardised formats and open
access under the Creative Commons Attribution
4.0 license (Varadi et al., 2022b). This simplifies
integration and broadens usability across research
domains.

Managing these large datasets requires robust
infrastructure. When hosted on-premises, High-
Performance Computing (HPC) clusters are often
necessary, but public access to major databases
helps reduce technical barriers. Many of these
databases are open to community contributions,
encouraging collaboration and continuous
improvement.


https://www.oeaw.ac.at/aithyra

The illustrated recent advances in protein
structure prediction illustrate how open science,
cutting-edge Al models, and shared infrastructure
can drive rapid progress in a complex scientific
domain. These developments highlight the
strategic value of investing in open, interoperable
Al ecosystems for scientific innovation. It is crucial
that these developments continue to advance
openly, ensuring the pace of scientific progress.

3.1.2 SAFE AND TRUSTWORTHY Al,
ETHICAL CONSIDERATIONS AND
CHALLENGES

The use of Al in protein structure prediction
demands a high degree of trustworthiness due to
its far-reaching implications for drug discovery,
therapeutic development, and biological research.
As models like AlphaFold2 increasingly influence
experimental design (Edich et al., 2022), resource
allocation,*2 and even clinical implementation,s

it is essential to ensure their reliability,
reproducibility, and transparency to uphold
scientific integrity and public trust.

Unlike many widely used Al systems, such as
large language models like ChatGPT, that often
lack explicit confidence scores, protein structure
prediction tools like AlphaFold incorporate built-in
metrics. The most used one is the predicted Local
Distance Difference Test (pLDDT), a confidence
score that allows users to judge the quality of the
results for each amino acid in the protein structure
(Jumper et al,, 2021). Similarly, protein language
models provide log-likelihood or perplexity metrics
to assess the confidence of predictions, which
have been shown to correlate with the quality of
structure prediction (Lin et al., 2023).

Still, even with these metrics, uncertainty
estimates remain imperfect, especially for
challenging cases that are underrepresented in

32 https://techfundingnews.com/50m-for-ai-programmable-
biology-latent-labs-led-by-deepminds-alphafold-alumnus-
to-design-novel-proteins/.

33 https://deepmind.google/discover/bloa/stopping-malaria-
in-its-tracks/.
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training data, such as flexible protein regions

that lack fixed structure (Alderson et al., 2023) or
proteins embedded in cell membranes (Dobson et
al,, 2023), many of which are clinically relevant.
For example, Agarwal and McShan (2024) stated
that current implementations of AlphaFold2 can
provide highly accurate working models for most
rigid, well-folded globular proteins, but may have
issues predicting other classes of proteins. This
limitation usually arises from the difficulty of
experimentally obtaining data of protein structures
that are not globular, that is, proteins that are

not typical, compact, and stable, given the special
experimental conditions required to isolate them.
Moreover, for available structures, experimental
conditions may introduce biases since the high-
salt conditions used to stabilise proteins for
X-ray and Nuclear Magnetic Resonance (NMR)
measurements differ from cellular environments.
Proteins can also adopt different conformations
depending on their cellular context and functional
states, adding variability not captured in static
experimental structures. These combined factors,
limited experimental data for non-globular
proteins and potential biases in existing structures,
result in less reliable predictions and confidence
estimates for challenging protein classes.

Another source of bias stems from the type

of experimental data by organism: the most
represented organism is human (31% of the
database entries), followed by synthetic constructs
and mice (4% each), and the bacterium E. coli
(39%).> This highlights a clear bias in organism
representation, which dominates the training
data and results in better predictions for these
organisms compared to less studied ones. This
organism bias becomes even more problematic
in the context of data obsolescence. Protein
sequences in reference databases like UniProt
are regularly updated, whereas models in

the AlphaFold DB remain static. Well-studied
organisms such as humans and mice, which
dominate the training data, show relatively stable
protein sequences, with only 2.8% and 2.4%
discrepancies, respectively, between AlphaFold

34 https://www.rcsb.orag/stats/explore/scientific name of
source organism/.
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models and current UniProt entries (Tsitsa et

al., 2025). In contrast, less intensively studied
organisms face significant obsolescence issues.
For instance, the zebrafish (Danio rerio) shows

a 43.4% discrepancy, with nearly half of its
AlphaFold models no longer corresponding to
current UniProt sequences due to major curation
efforts (Tsitsa et al., 2025). These issues can
limit researchers with restricted computational
resources who cannot continuously update protein
structure predictions, forcing them to rely on
potentially outdated models that may no longer
accurately represent current sequence data.

Despite these biases and limitations, the scientific
community has recognised that for many cases,
results are highly accurate, enabling reliable
predictions and representing a transformative
advancement in structural biology (Akdel et al.,
2022). Tasks that were previously infeasible, such
as predicting proteins with scarce evolutionary
information, making them especially difficult,

are now achievable in specific contexts (Porta-
Pardo et al., 2022), providing researchers with
structural insights for thousands of proteins

that would otherwise remain experimentally
uncharacterised. This represents a paradigm shift:
even with imperfect confidence estimates, having
reasonable structural predictions for previously
inaccessible proteins, including neglected disease
targets (Porta-Pardo et al,, 2022) and proteins
from plant organisms critical for environmental
research (Lin et al., 2025), constitutes an
enormous step forward for biological research.
However, substantial challenges remain ahead, as
research has demonstrated that computational
models designed to predict molecular interactions
require significant improvement before they can
effectively identify drug mechanisms of action
(Wong et al,, 2022), indicating that the path from
structural prediction to clinical application involves
considerable additional hurdles.

The field is actively working to address
these challenges and emerging ones
through community-driven initiatives. These
efforts, exemplified by the CASP competition
(Kryshtafovych et al., 2023), have inspired
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other scientific communities to adopt similar
collaborative approaches, such as the Virtual

Cell Challenge (Roohani et al., 2025). Therefore,

it is vital that these community initiatives

are maintained given the significant positive
impact in the structural biology field. Dedicated
structural funding is essential to avoid putting
scientific progress at risk, as evidenced by the
concerning potential end of the long-running CASP
competition due to discontinuation of funding.®

Beyond improving prediction accuracy, the field is
witnessing remarkable advances in protein design
capabilities. Generative models are increasingly
capable not only of predicting natural proteins

but also of designing novel proteins with desired
biological functions (Anishchenko et al., 2021). This
development holds great promise for accelerating
biomedical breakthroughs. However, it also raises
serious biosecurity concerns. These same tools
could be misused to engineer harmful proteins,
evade biosafety filters or support dual-use research.

At present, the risk of misuse is currently limited
by the need for users with advanced expertise

in both molecular biology and machine learning,
as well as by technical limitations (Peppin et al.,
2024). For example, current protein structure
prediction models do not fully account for real-life
factors like chemical changes to the protein, how
it folds inside the cell or how it interacts with other
proteins. However, these constraints could rapidly
diminish as the models become more advanced
and more accessible, which is witnessed through
the increasingly more central role that LLMs

are assuming in instances such as the provision

of guidance on protocols. To help mitigate

these risks, the developers of AlphaFold3 have
implemented technical safequards and responsible
use principles,**” for example, restricting the
modelling of certain viral proteins on server-based
platforms. Still, locally run or stand-alone versions
remain less regulated.

35 https://www.science.org/content/article/exclusive-famed-
protein-structure-competition-nears-end-nih-grant-money-

runs-out/.
36 https://alphafoldserver.com/terms/.

37 https://alphafoldserver.com/output-terms/.
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To proactively address emerging risks, policy
frameworks around biosecurity and Al are
beginning to take shape. The first International

Al Safety Report (Bengio et al., 2025) and

the Federation of American Scientists® has
emphasised the need for clear risk mitigation
strategies and biosecurity guidelines in the
context of Al. Leading scientists and organisations
have also contributed frameworks and raised
concerns focused about Al-related biological

risks (Bloomfield et al., 2024), including efforts
specific to Al-driven protein design (Baker and
Church, 2024; M. Wang et al., 2025). Leading tech/
Al companies are also raising concerns and risk
levels.s>+ These initiatives collectively underscore
the importance of identifying and mitigating
potential risks posed by biomolecular Al models
capable of generating novel proteins or other
molecules with harmful biological effects.

Managing these risks is particularly challenging
because open, global Al and biological research
are essential to preserving scientific progress
and international collaboration. Among ongoing
governance efforts, the EU has taken a leading
role.

In summary, given the current state of Al
development in the protein field, it is still too
early to anticipate all potential risks. However,

it is encouraging to see that expert groups

and regulators are proactively prioritising this
issue. Moving forward, the governance of Al in
protein science, and in the life sciences more
broadly, must strike a careful balance: enabling
innovation while implementing safeguards that
are technically sound, internationally coordinated,
and responsive to rapidly evolving capabilities and
threats.

38 https://fas.org/publication/bio-x-ai-policy-
recommendations/.

39 https://cdn.openai.com/pdf/18a02b5d-6b67-4cec-ab64-
68cdfbddebcd/preparedness-framework-v2.pdf.

40 https://www.anthropic.com/news/anthropics-responsible-
scaling-policy/.
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3.1.3 SKILLS AND INNOVATION

The breakthrough of Al-driven protein structure
prediction, exemplified by tools like AlphaFold2
and others (see Table 2), illustrates not only the
power of algorithms but also the evolving profile
of the modern researcher, the Al-powered (protein)
researcher. This transformation has important
implications for both the skillset needed in
research and the broader innovation landscape.

Modern research workflows demand an
interdisciplinary blend of expertise. The future-
ready Al-powered researcher and teams combines
deep domain knowledge in structural biology
with proficiency in ML methods, data science,
and software engineering. This hybrid expertise
enables them to curate complex biological
datasets, critically assess model predictions, and
adapt Al tools to answer new scientific questions.
A striking example of this interplay emerged
right after the release of AlphaFold2 results:
research groups rapidly integrated advanced DL
architectures with structural biology insights,
resulting in alternative implementations and
open-source projects such as RoseTTAFold and
later OpenFold (Table 2). This aqility reflects

a new generation of researchers capable of
understanding both the complexity of Al models
and their biological implications.

Yet technical skills alone are insufficient.
Successful Al-powered researchers also need a
collaborative mindset to bridge computational
and experimental disciplines. The impact of

this collaborative spirit is exemplified by the
partnership between the EMBL-EBI and DeepMind,
which led to the co-creation of the AlphaFold
Database. EMBL, with over 110 research groups
covering the breadth of molecular biology
(Stephen Cusack et al., 2021), contributed
expertise in data curation and integration,
making AlphaFold’s predictions broadly accessible
and usable within the biomolecular research
community. This collaboration not only produced
a resource covering millions of protein structures
but also advanced data standards and delivered
targeted predictions, for example, for 17


https://fas.org/publication/bio-x-ai-policy-recommendations/
https://fas.org/publication/bio-x-ai-policy-recommendations/
https://cdn.openai.com/pdf/18a02b5d-6b67-4cec-ab64-68cdfbddebcd/preparedness-framework-v2.pdf
https://cdn.openai.com/pdf/18a02b5d-6b67-4cec-ab64-68cdfbddebcd/preparedness-framework-v2.pdf
https://www.anthropic.com/news/anthropics-responsible-scaling-policy/
https://www.anthropic.com/news/anthropics-responsible-scaling-policy/

organisms on the World Health Organization
(WHO)’s list of neglected tropical diseases and for
10 organisms linked to antimicrobial resistance
(Stephen Cusack et al., 2021).

In addition, the Al-powered researcher must
actively address ethical considerations, data
biases, and reproducibility challenges inherent
to Al-driven science. While Al research has long
explored interpretability and explainability in
health (Bertolini et al., 2025), these aspects
remain less developed in protein biological
contexts, though initial efforts have begun in
protein structure prediction (Cheng et al., 2023;
Parsan et al., 2025; Vecchietti et al,, 2024) and
protein design (Hunklinger and Ferruz, 2025;
Medina-Ortiz et al., 2025).

In EU, the Al-powered research profile is increasingly
supported by initiatives like the European Al
Factories,** which will bring together data resources,
compute infrastructure, and interdisciplinary
expertise to help scientists harness Al effectively.
Such environments enable researchers not only to
apply existing models but also to innovate at the
intersection of biology and artificial intelligence,
bridging algorithmic development and biological
discovery to advance the field even further.
Complementary programs, like the MSCA (Marie
Sktodowska-Curie Actions) Doctoral Networks and
MSCA co-fund actions, are already supporting talent
pipelines and collaborations that help researchers
apply existing models and innovate at the interface
of biology and Al.

The increasing accessibility of Al-powered protein
structure prediction models is fundamentally
changing the research landscape, fostering

new opportunities for collaboration between
academia and industry. This shift highlights

how a combination of technical breakthroughs,
open science principles, and user-friendly tools

is accelerating the translation of foundational
discoveries into practical applications and
amplifying their real-world impact.

41 https://digital-strateqy.ec.europa.eu/en/policies/ai-
factories/.
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The dynamic landscape of startups plays a crucial
role in driving the field forward. Startups advance
innovation across four key areas: improving
precision and prediction through novel algorithms;
building collaborative networks with research
groups; exploring new therapeutic frontiers; and
creating technological synergies by integrating

Al with other cutting-edge approaches. Their
agility enables them to pivot quickly and establish
impactful collaborations. However, they also

face challenges, such as the need for significant
computational resources and navigating complex
regulatory landscapes, areas that can become
opportunities for differentiation and optimisation.
Examples of such startups include AlphaFold Al;
ProteoDesign, which engineers proteins for specific
functions; FoldLogic, which addresses protein
misfolding; and EnzymeCorp, which focuses on
industrial enzyme applications.*2 Horizon Europe
contributes to innovation by supporting start-ups
through the European Innovation Council (EIC) and
Al investments to unlock the power of data and
Al for breakthrough innovation, helping translate
emerging discoveries into practical applications
and products while facilitating the journey from
laboratory research to market deployment.

Ultimately, by investing in researchers who are as
comfortable working with algorithms as they are
interpreting biological meaning, and by fostering
environments where Al tools are designed for
usability and transparency, the field can ensure
that breakthroughs move swiftly and responsibly
from computational models to tangible benefits in
medicine and beyond. This interdisciplinary fluency
is indeed crucial, but equally important is fostering
collaboration between computational and
biological experts. Since comprehensive expertise
across both domains is scarce, creating structured
opportunities for sustained partnerships between
Al specialists and domain experts becomes
essential, which ensures that computational power
is paired with deep biological insight.

42 https://fastercapital.com/content/Protein-folding-and-
aggreqgation--Startups-and-Protein-Folding--Navigating-
Complexity-for-Success.html.
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3.1.4 RESEARCH COMMUNITY

Protein structure prediction using Al is recognised
as a highly interdisciplinary endeavour, situated

at the intersection of computational science, ML,
biology, and biophysics. This field has rapidly
advanced due to open collaboration among
researchers, industry practitioners and government-
funded institutions across the globe. To provide a
more detailed illustration of the evolution of this
research community, an analysis was conducted
on 12,307 publications indexed in Scopus between
January 2020 and May 2025 and retrieved
following the methodology described in Section
1.3. This investigation focused on articles, reviews

and conference papers considering the keywords
described in Table 1. This quantitative overview
highlights the geographical distribution of research
activity (Figure 20), the diversity of contributing
institutions (Figure 21 and Figure 22), and the
collaborative framework that supports scientific
progress in this Al-driven domain (Figure 23).

In terms of geographical distribution (Figure

20), the largest number of publications within

the defined scope originated from China (2,616;
21.3% of total), the US (2,418; 19.6% of total), EU
(2,181; 17.7% of total), India (877; 7.1% of total)
and the UK (618; 5% of total).

Figure 20. Global geographical distributions of scientific literature contributions related to ‘protein structure
predictions’ topics, indexed by Scopus between Jan. 2020 and May 2025.
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Source: JRC’s own elaboration based on divinAl methodology.

Publications were produced by a diverse set

of establishments, with universities being

the predominant contributors, followed by
companies and government research facilities
(Figure 21). This breakdown underscores the
central role of academia in advancing the field,
while also highlighting significant engagement
from industry and public research institutions.
A higher percentage of publications from EU
research facilities is observed in comparison

to other countries/regions, which highlights the
government investment in the studies and the
presence at the heart of how research is driven
in EU.
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Region acronym

Figure 21. Distribution of ‘protein structure prediction’
literature contributions by type of establishments and
geographical area. Considered contributions are indexed
by Scopus between Jan. 2020 and May 2025.
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Taking a closer look at the synergies within
Europe, a more granular analysis of the data
shows a spread of research contributions across
different types of establishments (Figure 22). It is
evident that publications are consistently driven
by educational establishments. This distribution
reflects that open-source datasets and pre-
trained models have significantly lowered the
barriers to entry, enabling research groups from
both larger and smaller institutions to engage in
an area that previously demanded substantial
computational costs. For example, AlphaFold2
was reported to have been trained on 128 TPUs
(Cheng et al., 2023), greater than the combined

resource intensity of all the competing teams

in the CASP’s 14" edition in 2020.# Thanks to
community resources and shared infrastructure,
many European laboratories are now able to
participate actively, despite having smaller local
compute budgets. In terms of private sector,
which includes start-ups and scale-ups, an
increase of 325% can be observed in the period
2020-2024.

43 https://www.blopig.com/blog/2020/12/caspl4-what-
google-deepminds-alphafold-2-really-achieved-and-what-
it-means-for-protein-folding-biology-and-bioinformatics/.

Figure 22. Amount of ‘protein structure prediction’ literature contributions across EU countries by type of
establishments over the years from Jan. 2020 to May 2025. Considered contributions are indexed by Scopus.
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Beyond the diversity of institutions, collaboration
also plays a critical role. Patterns were examined
by analysing co-authorship networks based

on a selected set of publications. The analysis
indicates that the largest cross-regional
partnership is identified between the EU and

the US, as well as between the US and both

the EU and China (Figure 23(a)). A finer level

of granularity was then applied to investigate
collaboration patterns within the EU by type of
establishment (Figure 23(b)). Data reveal that the
most common connection (among different type
of establishments) occurs between educational
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institutions and either research facilities or
companies. Additional, though less frequent,
relevant collaborations involve universities
working with government bodies, healthcare
institutions and non-profit organisations.
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Figure 23. Collaboration patterns in ‘protein structure prediction’ field. Amount of co-authored literature
contributions by (a) geographical area and (b) type of establishments (only EU). Considered contributions are indexed
by Scopus between Jan. 2020 and May 2025.
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Protein structure prediction: Take-home messages

— Al has enabled a paradigm shift in structural biology by accurately predicting protein
structures with near-experimental precision, a breakthrough recognised by the Nobel Prize in
Chemistry in 2024.

— This success is underpinned by a commitment to open science, leveraging publicly available
datasets (e.g. PDB, UniProt) and collaborative benchmarking efforts (e.g. CASP).

— While training these models requires significant computational resources, the dissemination
of pre-trained models through web tools and shared infrastructures has democratised their
use for the wider scientific community.

— Despite these advances, challenges remain in predicting the structures of non-globular
proteins and addressing data biases. The dual-use potential of protein design models also
necessitates proactive biosecurity and governance frameworks.

3.2 Material d|scovery et al.,, 2025), paving the way for real-world
Materials science is undergoing a transformation applications such as more efficient solar panels,
fuelled by the integration of Al, which is reshaping improved batteries for electric vehicles, innovative
the landscape of material discovery. Al's catalysts for emission reduction, and personalised
capability to rapidly accelerate material discovery medicine. Therefore, this acceleration is not just
holds the potential to revolutionise critical areas a matter of speed. It has profound implications
such as carbon capture (Manikandan et al., 2025), for sustainability, energy efficiency, and the
semiconductor design (Raghuwanshi, 2024), development of novel technologies that could
energy storage (Zhao et al., 2020), catalysis redefine our interaction with the natural world.

(Zhao et al., 2019), and biomaterials (Pugliese
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Historically, materials discovery has been a
labour-intensive and time-consuming process,
relying on human intuition, knowledge, and
exhaustive trial and error experimentation, with
long iteration cycles which limited the number of
candidates that could be tested. Thanks to the
availability of open material databases (Curtarolo
et al,, 2012; Kirklin et al,, 2015; Scheidgen et al,,
2023; Talirz et al,, 2020) and recent advances

in high-throughput screening (Curtarolo et al.,
2013) and Al-based property predictors, it is now
possible to screen hundreds of thousands of
materials and identify promising candidates in a
substantially shorter time.

Despite their advantages, screening-based
methods are still fundamentally constrained by
the number of known materials. For example,

the largest explorations of previously unknown
crystalline materials are on the order of 107 (Zeni
et al,, 2025), which is only a small fraction of the
number of potentially stable inorganic compounds
(Davies et al., 2016). Furthermore, these methods
have not yet been shown to be efficiently steered
towards discovering materials with specific target
properties.

Given these limitations, there has been growing
interest in the so-called inverse material design
approach (property-to-structure), which represent
a paradigm shift in material discovery. Rather than
starting with a known set of material structures
and predicting their properties, the inverse
approach begins by defining a set of desired
properties (constraints) and seeks to identify

the corresponding molecular or extended crystal
structures that satisfy them (Park and Choi, 2024)
(see Figure 24). Initial approaches to achieving
the goal of inverse design were based on global
optimisation in the chemical space, for example
by using gradient descent (Freeze et al., 2019)

or evolutionary methods (Allahyari and Oganov,
2020). However, the most promising approaches
are based on generative Al (GenAl) models.

54

Figure 24. Schematic representation of high-
throughput materials screening and generative inverse
material design approaches.
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Source: JRC’s own elaboration, adapted from multiple sources
including Park and Choi (2024).

In essence, a GenAl model is trained to map
input data, in the form of a numerical tensor
that encompasses chemical composition, crystal
structure and relevant physical properties of
each material, to a latent or feature space
represented as a joint probability distribution.
This mapping is typically referred to as encoding,
and the inverse process is called decoding, which
involves transforming from the latent space back
into the original data space. Both encoding and
decoding models are obtained through learning
from a large amount of data. Generation is then
the creative process by which novel compounds
are produced by sampling from the joint
probability distribution and decoding back into
the original input space (Park et al., 2024). The
most commonly used GenAl model architectures
adopted in this domain are:

— \Variational Autoencoders (VAEs), which
combine an encoder that maps input
data to a continuous learned latent
representation with a decoder that
generates samples by drawing from the
probability distribution.

— Generative Adversarial Networks (GANS),
which are based on a generator model
that produces synthetic data, and a

?



discriminator model trained to distinguish
between real and synthetic data.

— Autoregressive transformer-based
architectures, including encoder-only and
decoder-only attention-based approaches,
which are widely used for LLMs.

— Graph Neural Networks (GNNs), while not
inherently a GenAl model, can be utilised
as a component in various generative
architectures such as graph VAEs and graph
GANs to generalise Neural Networks (NNs)
to irregular-shaped graph structures such
as chemical graphs of atoms and bonds, 3D
structures, or point clouds of atoms, enabling
the learning of complex relationships and
patterns in material structures.

— Diffusion models, emerging architectures
that generate sampled materials through a
series of iterative stochastic transformations
applied to an initial noisy data distribution.

While inverse design represents a central and
rapidly advancing area of Al-driven materials
discovery, it is worth noticing that it is not the only
relevant application. Al is also increasingly used
to analyse experimental and simulation data,
identify structure—property relationships, and
optimise synthesis or processing conditions (Jiang
et al,, 2025; Li et al., 2020; Pyzer-Knapp et al,,
2022; Wang and Zhang, 2025).

3.2.1 DATA, MODELS AND
INFRASTRUCTURE

As in other domains, advancements in materials
science have been driven by the combination

of new computational approaches and open-
access datasets. These have been instrumental
in material simulation, property prediction, high-
throughput screening and, more recently, inverse
design. The number of database and dataset
resources in materials science is remarkable
(Oturak, 2025). Table 5 highlights some of the
most relevant resources that are fundamental for
material discovery.
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One of the most important examples is the
Materials Project (Jain et al., 2013) which is a
multi-institution, multi-national effort to compute
the properties of all inorganic materials and
openly provide the data and associated analysis
algorithms. The project was established in 2011,
and so far (July 2025), they provide more than
200K materials and 577K molecules* (see Figure
25). Other well-known databases are AFLOW
(Curtarolo et al,, 2012), an open-access database
of more than 3.5M material compounds with
over 743M calculated properties; Novel Materials
Discovery (NOMAD) laboratory (Scheidgen et al.,
2023), which contains more than 100M high-
quality calculations; Open Quantum Materials
Database (OQMD) (Kirklin et al., 2015), which
provides Density Functional Theory (DFT)
calculated thermodynamic and structural
properties of more than 1.3M materials; GNoME
(Merchant et al., 2023), which released more than
2.2M predicted new crystals, including 380K stable
materials; and Alexandria (Schmidt et al., 2023),
that contains more than 5M DFT calculations for
periodic 3D, 2D and 1D compounds.

Table 5. Summary of some of the most representative
materials science databases and repositories, in
chronological order, including database name, type of
data (empirical/computational), open-source availability,
country/region of the original contribution (used as
proxy for region) and literature reference.

Data- Open
base TES source Red
Compu- (Curtarolo et
AFLOW tational Y us al,, 2012)
hﬂ;ﬁi_ Compu- y US (Jain et al,,
) tational 2013)
Project
Compu- (Kirklin et al.,
OQMD tational Y us 2015)
Compu- (Scheidgen et
NOMAD tational Y EU al,, 2023)
Compu- (Merchant et
GNoME tational Y us al,, 2023)
Alexan- | Compu- v EU (Schmidt et al,,
dria tational 2023)

Source: JRC’s own elaboration.

44 https://next-gen.materialsproject.org/.
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Figure 25. Number of material database entries
provided in the Materials Project since 2011.

Source: The Materials Project (Jain et al., 2013).

Beyond open-access repositories and generative
model architectures, several large-scale national
and international initiatives have emerged to
establish integrated platforms for data-driven
materials discovery. In Europe, the DiaDEM project*
(Digital Discovery platform for Organic Electronic
Materials) is developing a platform for the design
of organic semiconductors by connecting virtual
screening, synthesis planning, and chemical supply
chains. The initiative also provides a dedicated
dataset*s with curated molecular structures

and optoelectronic properties to support digital
screening workflows. Complementing this effort,
MaterialDigital,¥ a German initiative, aims to
harmonise digital representations of materials

by introducing machine-readable standards

and common ontologies spanning the entire
materials lifecycle, from production to application.
The initiative focuses on aligning academic and
industrial practices to reduce fragmentation and
foster data interoperability.

At the international level, Japan’s Materials DX
initiative,” launched under the national Strategy
for Strengthening Materials Innovation Capability,
supports the long-term deployment of data-driven

4 https://www.diadem-project.eu/.

46 https://diadem-staqing.de/.

47 https://www.materialdigital.de/.

48 https://unit.aist.go.jp/mdx/en/.
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approaches through the DxMT programme*. This
effort seeks to accelerate the development of
materials with innovative functions, particularly
in strategic domains such as sustainability and
carbon neutrality, by integrating accumulated
scientific knowledge with Al and data science
methods.

These initiatives represent a strategic effort to

go beyond datasets, supporting the creation

of national-scale platforms that integrate
modelling, data infrastructure, and real-world
experimentation, thereby reinforcing the role of Al
in materials innovation.

GenAl models for inverse material discoveryhave
greatly benefited from the availability of these
databases. One fundamental aspect that
distinguishes between models is the choice of
crystal structure representation. At a higher

level, representations are categorised into those
based on coordinates (e.g. (x, y, z) components

of the (g, b, c) lattice vectors of the unit

cell), 3D voxels or point clouds, standardised
Crystallographic Information Files (CIF), or other
type of representations (e.g. Wyckoff positions).
In Table 6, a summary of the most relevant
models for inverse material discovery is provided,
in chronological order, including the type of
structure representation used for the input, the
model architecture and whether the model is
open source. As can be observed, the most used
representation is based on coordinates, with some
early examples using voxels and more recent
cases using CIF. Regarding model architectures,
with few exceptions, the evolution has progressed
from early models based on GANs and VAEs to
more recent models based on autoregressive
transformers and diffusion models. Most of the
models are open source, although there are some
recent notable exceptions, such as MatterGen
(developed by Microsoft) (Zeni et al.,, 2025).
However, while Table 6 presents ‘open-source’
status as a binary attribute, it is important to
acknowledge that the reality is more nuanced. In
several cases, including material science research
but not limited to it, despite this label, critical

4% https://dxmt.mext.go.jp/en/.
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components (e.g. pre-trained weights, training
pipelines, fine-tuning protocols or proprietary
datasets) are withheld (Persaud et al., 2024,

Van et al., 2025). This partial openness can lead
to erroneous perceptions of reproducibility and
accessibility.

Table 6. Summary of generative Al models for inverse material discovery in chronological order, including model
name, input type, model architecture, open-source availability, country/region of the corresponding author (used as
proxy for region) and literature reference.

Input type

Model
architecture

Open
source

Region

CrystalGAN Coordinates GAN Y EU (Nouira et al.,, 2019)
Crystal-VAE Voxels VAE Y CA (Hoffmann et al, 2019)
iMatGen Voxels VAE N KR (Noh et al., 2019)
G-SchNet Coordinates Generative- Y EU (Gebauer et al.,, 2019)
SchNet
CCCGAN Coordinates GAN N KR (Kim et al., 2020)
ICSG3D Voxels VAE Y UK (Court et al., 2020)
CCDCGAN Voxels GAN N EU (Long et al,, 2021)
CubicGAN Coordinates GAN Y us (Zhao et al,, 2021)
CDVAE Coordinates | VAE + Diffusion Y us (Xie et al,, 2021)
Coordinates
FTCP and structured VAE Y SG (Ren et al., 2022)
factors
xyzTransformer CIF Transformer N CA fsl;mfgizrkerzdoaznsd
Coordinate
UniMat embedded Diffusion N us (S. Yang et al., 2023)
periodic table
GNoME Coordinates GNN Y us (Merchant et al., 2023)
Crystal-LLM Coordinates Transformer Y us (Gruver et al., 2023)
DiffCSP Coordinates Diffusion Y CN (Jiao et al,, 2023)
CrysTens Coordinates | GAN + Diffusion Y us (Alverson et al.,, 2024)
CristalFormer Coordinates Transformer N CN (Cao et al., 2024)
WyCryst Wyﬁf::;;ite VAE N SG | (R zhu et al, 2024)
CrystalLLM CIF Transformer Y UK (Antunes et al., 2024)
MatterGen Coordinates Diffusion N UK (Zeni et al., 2025)

Source: JRC’s own elaboration based on literature contributions, including (Park et al, 2024).

When it comes to the infrastructure needed to
train these models, it is worth noting that the
size of these models in terms of the number of
parameters is relatively moderate, especially
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when compared to the size of state-of-the-art
GPAI models, such as LLMs. For example, Figure
26 displays the number of parameters for the
models with available data. The blue points




represent models used for molecular simulation
and property prediction. The red points represent
models for crystal discovery, including the

most advanced ones, such as CrystaLLM and
MatterGen, with 200M and 46.8M parameters,
respectively. In comparison, recent open-weight

‘small’ LLMs, such as Mistral Small 3 with 24B
parameters, Llama 4 Scout with 17B parameters,
or larger models like Llama 4 Maverick with 400B
total parameters (based on Epoch Al’s ‘Data on
Al Models’??), are between 2 and 4 orders of
magnitude larger.

Figure 26. Number of parameters of models for ‘materials simulation and property prediction’ (blue points) and

‘inverse material discovery’ (red points).
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The compute required to train these models is
proportional to the size of the model (humber of
parameters) and the size of the training dataset
(number of data points). Some examples of
training compute in floating-point operations
(FLOPs) are depicted in Figure 27. The most recent
models for inverse material design, CrystalLLM
(large, transformed-based architecture) and
MatterGen (diffusion-based have been trained
with a total of 4.6 x 10'® and 2.7 x 10'°® FLOPs,
respectively. In comparison, the aforementioned
open-weights GPAI models, have been trained
with much larger amount of compute, such as
1.15 x 10%* FLOPs for Mistral Small 3, or 4.08 x
10%* FLOPs for Llama 4 Scout (based on Epoch
Al's ‘Data on Al Models'?’). Therefore, in terms of
compute, the difference between the most advance
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models for materials discovery and the state-of-
the-art open-weight GPAI models is approximately
5-6 orders of magnitude. This is why the current
landscape of Al Factories in Europe is, for now,
sufficient to meet the training needs of these
models in the short to medium term. However,
compared to state-of-the-art GPAlI models, there
is still significant room for improvement, and

it is likely that future GenAl models for inverse
materials design will be trained with much

larger amounts of compute in the future. This
increase will likely be driven, at least initially, by
the availability of more data, both empirical and
computational, as well as the use of larger-scale
GenAl model architectures (in terms of the number
of parameters), following a similar trajectory to
that seen in the development of LLMs.



Figure 27. Training compute (FLOPs) for ‘materials simulation and property prediction’ (blue points) and ‘inverse
materials discovery’ (red points). Note that training compute are proportional to the number of models parameters

and data points used for training.
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Alongside data volume, the quality and
consistency of materials datasets are critical

for developing reliable Al models. Issues like
inconsistent labels, incomplete metadata, and
varying simulation parameters can result in
misleading predictions and lower generalisability
(Himanen et al., 2019). Many existing datasets
also lack proper documentation or benchmarking
protocols, especially when aggregating from
diverse sources (Van et al., 2025). Improving data
quality is essential for robust and reproducible
materials discovery, and initiatives like the
above-mentioned NOMAD are already advancing
this agenda. Once a certain level of saturation

is reached in terms of data and model scale,
algorithmic improvements and data quality will
play a crucial role.
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3.2.2 SAFE AND TRUSTWORTHY Al,
ETHICAL CONSIDERATIONS AND
CHALLENGES

The promises of using inverse material design

via generative Al to accelerate the discovery

of new materials, their properties, and the
development of potential new products, patents,
and innovation activities are very enticing. While
Al models operate in the virtual domain to
predict candidate materials with specific target
properties, their impact is increasingly amplified
when associated with self-driving laboratories, i.e.
automated experimental platforms that integrate
robotics, sensing, and Al to perform synthesis and
characterisation with minimal human intervention.
These two components are conceptually distinct
yet operationally complementary: GenAl proposes
hypotheses; self-driving labs test them in closed-
loop cycles. Their integration defines a new
paradigm of autonomous materials discovery.

In fact, the number of initiatives focusing on
intelligent, automated, or self-driving laboratories



has grown significantly in recent years.*® However,
on several occasions, the expectations created

by the narratives of some scientific works are
perhaps too high and create distortions in both
the scientific community and the general public,
which may ultimately also impact policy decisions.
Both traditional knowledge-led computational
materials design and inverse material designs
approaches are sometimes criticised for making
predictions that are obvious-trivial variants of
known systems-, or even erroneous-compounds
that are unstable or fail to exhibit the predicted
structure/properties (Park et al., 2024).

One example is the case of the A-lab, an
autonomous laboratory for Al-driven synthesis
of targeted compounds published in Nature
(Szymanski et al., 2023), which, just a few days
after its publication, and following some criticism
regarding the quality of the experimental
analysis, had to publish a responsest with
additional data to supplement the original paper,
providing evidence that the targeted compounds
were indeed successfully synthesised. They
declared that the A-Lab is not intended to replace
the materials discovery process with Al agents.
Rather, the A-Lab is meant to address a current
fundamental limitation in materials science: the
number of predicted materials vastly exceeds the
capabilities of humans to test experimentally. The
focus of our efforts is on the early, exploratory
stages of materials discovery: attempting
synthesis and gathering data. A human in the loop
is still required for the latter stages of discovery.

Another case that drew criticism was the

GNoME tool from Google DeepMind (Merchant

et al., 2023), which was announced as a key
breakthrough for the discovery of up to 2.2 million
new materials. A subsequent study (Cheetham
and Seshadri, 2024), however, found scant
evidence for compounds that fulfilled the trifecta
of novelty, credibility, and utility, concluding that
while the methods adopted in this work appear

50 https://aithub.com/AccelerationConsortium/awesome-
self-driving-labs.

51 https://www.linkedin.com/pulse/regarding-our-recent-a-
lab-article-gerbrand-ceder-Osz6c.
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to hold promise, there is clearly a great need
to incorporate domain expertise in materials
synthesis and crystallography.

In this context of high expectations, there have
even been extreme cases of possible scientific
and academic fraud, such as the recent study

on the impact of Al on accelerating materials
discovery, patents, and product prototypes (Toner-
Rodgers, 2024). The research, presented by a PhD
student at MIT, had a significant scientific and
social impact, and was covered by some of the
most prestigious newspapers and news sections
of the most relevant scientific journals (The BS
Detector, 2025). Unfortunately, MIT recently
stated that, after an internal and confidential
review, they have no confidence in the veracity

of the research contained in the paper (MIT
Economics, 2025). The MIT formally requested
arXiv and The Quarterly Journal of Economics to
withdraw the paper.

These examples highlight the importance of Al
in science research, particularly in the context

of materials discovery, being conducted by
multidisciplinary teams that incorporate specific
domain expertise. Additionally, full autonomy
does not have to be a goal in itself. GenAl models
can still play a valuable role in providing novel
suggestions while keeping materials scientists
and complementary computational search
strategies ‘in the loop’. These elements, some of
which are key to the EU’s approach to Trustworthy
Al, are essential to consider in the context of any
Al in science strategy that aims to maximise the
benefits of Al while minimising unintended and
harmful side effects. These potential negative
effects can also be minimised by the availability
of educational resources, tools, standards, and
good practices that can improve expertise and
provide the necessary skills to implement Al in
various scientific domains.

3.2.3 SKILLS AND INNOVATION

In addition to the general interdisciplinary
context that Al in science approaches entails,
where domain-specific expertise and skills (in


https://github.com/AccelerationConsortium/awesome-self-driving-labs
https://github.com/AccelerationConsortium/awesome-self-driving-labs
https://www.linkedin.com/pulse/regarding-our-recent-a-lab-article-gerbrand-ceder-0sz6c
https://www.linkedin.com/pulse/regarding-our-recent-a-lab-article-gerbrand-ceder-0sz6c

this case, materials science) must be combined
with Al-specific profiles typical of the engineering
and computer science fields (Sun et al., 2022),

it is worth highlighting that in the context of Al

in materials science, there are several initiatives
and resources (Reeve et al., 2019) that serve

as good examples for other research domains,
including datasets, simulation tools, tutorials,
learning modules, etc. For example, there are

a considerable number of initiatives providing
open-source tools, tutorials and notebooks on
various methods for materials design such as
JARVIS-Tools Notebooks (Choudhary et al., 2020),
Materials Simulation Toolkit for Machine Learning
(MAST-ML) (Jacobs et al., 2020), Machine Learning
Lab Module (Afflerbach et al., 2020), or REsource
for Materials Informatics (REMI) (NIST, 2025).

Other more structured initiatives include the
NOMAD Lab (Scheidgen et al., 2023), which, in
addition to serving as a database of resources for
training generative models, provides other types
of resources such as Al toolkits, an encyclopaedia,
tutorials, and documentation. Another relevant
initiative is Materials Cloud (Talirz et al., 2020),
which is presented as an approach to enable the
seamless sharing and dissemination of resources
in computational materials science. This platform
offers a range of tools, including educational,
research, and archiving tools on one hand, and
simulation software and services on the other, as
well as curated and raw data. All these initiatives
are excellent examples of what good practices
might look like in the context of improving
expertise and providing the skills needed to
implement Al in various scientific domains.

In the realm of innovation, while some highly
significant initiatives in the field of materials
science have emerged from major tech
companies, such as Meta with OMat24 (Barroso-
Luqgue et al,, 2024), Google DeepMind with the
GNoME Project (Merchant et al.,, 2023)2, or more

2 Despite the aforementioned recent critique (Cheetham
and Seshadri, 2024) of the hyperbolic claims made by
Google DeepMind regarding the discovery of 2.2 million
structures (an order-of-magnitude expansion in stable
materials known to humanity), this work remains one of the
most impactful in the materials science domain.
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recently Microsoft with MatterGen (Zeni et al,
2025), the ecosystem of startups specifically
focused on leveraging advanced Al tools to
enhance materials discovery is nonetheless
substantial.s* The innovative nature of research
activities in the materials science domain is
strengthened by several aspects that arise
from the integration of Al, which, as previously
mentioned, not only accelerates the materials
discovery process but also makes it much
more efficient and sustainable, and focused on
addressing very important real-world problems.

3.2.4 RESEARCH COMMUNITY

The use of Al for materials discovery has emerged
as a rapidly expanding interdisciplinary field at
the intersection of materials science, physics,
chemistry and ML. This convergence is driven

by both technological advancements and the
growing recognition of Al's potential to accelerate
the discovery of functional materials for energy,
electronics, healthcare, and sustainability. The
field has benefited from the interaction between
domain scientists, data infrastructure projects,
and researchers, often supported through publicly
funded initiatives and collaborative platforms.

To illustrate the evolution and structure of this
research community, 7,769 publications indexed
in Scopus between January 2020 and May 2025
(retrieved following the methodology described in
Section 1.3) are analysed by filtering for articles,
reviews and conference papers considering the
keywords described in Table 1. This analysis offers
a quantitative perspective on the geographical
distribution of scientific output (Figure 28), the
diversity of contributing institutions (Figure 29
and Figure 30), and the degree of collaboration
across countries and sectors (Figure 31).

In terms of geographical distribution (Figure 28),
the largest number of publications within the
defined scope originated from China (3,342; 35.7%),
followed by the US (1,769; 18.9%), the EU (1,098;
11.7%), South Korea (432; 4.6%), the UK (385;
4.1%), India (250; 2.7%), and Japan (241; 2.6%).

53 ‘42 Best Startups in Europe to watch in 2025, https:/
www.seedtable.com/best-startups-in-europe.
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Figure 28. Global geographical distributions of scientific literature contributions related to ‘material discovery’ topics,

indexed by Scopus between Jan. 2020 and May 2025.
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Source: JRC’s own elaboration based on divinAl methodology.

The publications were produced by a variety of organisations, with universities being the main
contributors, followed by research institutions and private companies (Figure 29).

Figure 29. Distribution of ‘material discovery’ literature contributions by type of establishments and geographical
area. Considered contributions are indexed by Scopus between Jan. 2020 and May 2025.
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Source: JRC’s own elaboration based on divinAl methodology.

In the EU, most research output on Al-driven
materials discovery originates from academic
institutions, followed by research facilities, private
companies, and, to a lesser extent, non-profit
organisations, government bodies, and healthcare
institutions (Figure 30). This distribution reflects
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the continued leadership of academia, supported
by increasing participation from other sectors. The
availability of open datasets, pre-trained models,
and shared platforms has made it easier for a
wide range of institutions to contribute, including
those with more limited computational resources.



Figure 30. Amount of ‘material discovery’ literature contributions across EU countries by type of establishments
over the years from Jan. 2020 to May 2025. Considered contributions are indexed by Scopus.
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Source: JRC’s own elaboration based on divinAl methodology.

Changing perspective, collaboration networks are links are between educational institutions and
also essential to the research landscape. Co- research facilities, followed by collaborations
authorship analysis of the selected publications between academic institutions and companies
reveal that the most prominent cross-regional (Figure 31(b)). Less frequent, but still present,
collaborations occur between the EU and the are joint publications involving universities and
UsS, as well as between the US and China (Figure government bodies, healthcare institutions, or
31(a)). At a more granular level, collaboration non-profit organisations.

patterns within the EU show that the strongest

Figure 31. Collaboration patterns in ‘material discovery’ field. Amount of co-authored literature contributions by (a)
geographical area and (b) type of establishments (only EU). Considered contributions are indexed by Scopus between
Jan. 2020 and May 2025.
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Material discovery: Take-home messages

based on desired properties.

in research infrastructure.

— The field of material discovery is being revolutionised by Al, moving from traditional trial-and-
error to novel paradigms, such as inverse material design, which generates novel compounds

— This progress is powered by a variety of generative Al architectures and a robust ecosystem
of open computational material databases, which facilitate high-throughput screening and
accelerate innovation in strategic areas like energy and sustainability.

— Despite the significant potential, this research field faces challenges related to inflated
expectations, and a critical need for domain expertise to validate Al-generated hypotheses. The
computational demands, while moderate compared to LLMSs, still require significant investment

3.3 Ancient site discovery and virtual
restoration of inscriptions

Archaeology is the scientific study of the material
remains of past human life and activities. It
involves studying ancient artifacts, structures, and
landscapes to understand the historical significance
of human societies, their formation, and cultural
diversity across time. Its mission is to understand
the lives, cultures and behaviours of ancient
civilisations and societies that existed long before
written records (Jorge, 2024). Through physical
remnants, the development of human civilisation
and the evolution of cultures over time can be
uncovered. European archaeology focuses on the
rich and varied heritage of Europe, highlighting
both the commonalities and diverse elements that
have shaped the continent’s history. By uncovering
and interpreting materials from different eras,
archaeologists contribute to social cohesion by
fostering an understanding of our shared, collective
past while also celebrating the distinct cultural
identities that exist. In recent years, Al has emerged
as a powerful tool, offering new methods for
analysing archaeological data and enhancing the
ability to uncover and interpret historical insights.

The study of inscriptions on long-lasting materials,
such as stone, metal or pottery, is crucial for
reconstructing historical narratives (Robert, 1961).
Through the field of epigraphy, researchers can
uncover precious information about ancient
languages, cultures, and societies through the
deciphering and interpretation of these texts
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(Bodel, 2012). The precision and depth of historical
understanding greatly rely on the efforts of
epigraphers, who traditionally use meticulous
manual methods to examine and restore
inscriptions. European epigraphy holds significant
importance due to its extensive record of diverse
inscriptions, ranging from ancient Roman and Greek
texts to medieval carvings (Millar, 1983). These
inscriptions provide a window into cultural, political,
and social dynamics, offering critical insights into
the rich and varied history of the continent. The
study of the artefacts, from objects to structures,
is of an inherently interdisciplinary nature, which
enables researchers in the field to integrate

tools and methods from chemistry, physics,

and biology in order to extend their analytical
possibilities far beyond those of traditional
approaches. When combined with Al, these cross-
disciplinary techniques have significantly expanded
the capacity of archaeology for discovery and
interpretation. Given the breadth of areas in which
Al is applied in the diverse field of archaeology,
two focus areas were chosen in order to showcase
different techniques: site discovery and virtual
restoration of inscriptions. Examples of how Al
is being used in these areas are provided below.

By combining advanced techniques in epigraphy
with site discovery efforts, researchers can
develop a more comprehensive understanding of
ancient civilisations, accelerating the discovery
process and uncovering new connections between
archaeological findings. This integration not

only enhances the accuracy and efficiency of



archaeological excavations but also contributes
to the preservation and interpretation of cultural
heritage on a broader scale.

Site discovery is a key area influenced by Al
through cutting edge digital sensor data, such as
3D site scans, satellite imagery and environmental
datasets. This wealth of data, combined with Al
algorithms, enables archaeologists to identify
previously unknown sites, classify artefacts and
reconstruct patterns of ancient human behaviour
(Gattiglia, 2025). In Copan, Honduras, an analysis
of airborne Light Detection and Ranging (LiDAR)
data using a DL model applied to 3D point clouds
was successful in classifying Maya archaeological
sites (Richards-Rissetto et al., 2021). Also, in Nazca
Desert, Peru, low-flying drones captured high-
resolution images of an area spanning 600 km2
of desert. More than 1,300 potential candidates of
Nazca culture sites were identified by DL models
trained to detect figurative geoglyphs. Subsequent
ground verification confirmed 303 novel geoglyphs,
almost doubling the number of figures associated
with the Nazca culture (Sakai et al., 2024). Lim and
Qiu (2023) developed p-Net, a ConvNeXt-based
U-Net architecture that converts muon scattering
data into high-resolution three-dimensional density
maps, facilitating the non-invasive investigation

of ancient structures. Similarly, Benhammou et al.
(2025) applied Al-enhanced muon tomography

to detect and map subterranean features

beneath the City of David heritage site. In forensic
archaeometry, Siozos et al. (2021) integrated
Laser-Induced Breakdown Spectroscopy (LIBS)
with NNs to re-associate commingled human bone
fragments in complex burial contexts, achieving
high classification accuracy and contributing

to more efficient reconstruction of fragmented
remains. The above examples show that using

Al algorithms to analyse aerial and satellite data
can increase the size of archaeological records

far beyond what can be achieved through ground
surveys alone. Together, these studies exemplify
how Al-enabled methods, ranging from ML for
peptide analysis, Convolutional Neural Networks
(CNNs) for spectroscopic imaging, DL for muon
tomography, to NN classification in LIBS, are
expanding the interpretative capabilities of
archaeology beyond the traditional methodologies.

Virtual restoration of inscriptions includes
the recovery of ancient texts, documented in
inscriptions, allowing the present generations to

gain insights on the evolution of writing but also the
narratives of those cultures. However, due to age

or external factors, ancient texts can be subjects of
degradation and partial loss of information, which
eventually leads to a loss of context for fields such as
history, archaeology and literature.

Figure 32. Restoration of a damaged inscription, recording a decree from 485/4 BCE concerning the Acropolis of

Athens (IG 13 4B, CC BY-SA 3.0, WikiMedia).
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Source: Assael et al. (2022)

A survey published in the last few years
(Sommerschield et al., 2023) on the prevalence

of the uptake of ML in the study of ancient
languages, as shown in Figure 33, found that there

65

has been a significant increase in the interest

in tackling tasks in this space, ranging from the
determination of authorship to the restoration of a
damaged or partially incomplete inscription.



Figure 33. Amount of literature contributions related to ML-based studies into ancient languages domain.
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Source: JRC’s own elaboration based on data from literature contribution (Sommerschield et al,, 2023).

Focusing on inscription restoration, the first ancient

text missing character restoration model was Pythia.

Its task was to predict characters from a partial text
input (Assael et al., 2022). On a character level, the
error rate that was reported for Pythia was 30.1%,
while human epigraphists were assigned a 57.3%
error rate. Pythia was the result of the collaboration
between researchers from DeepMind and the
University of Oxford (Assael et al., 2019). Pythia
was made available as a Python notebook interface
and an offline version, available on GitHub. Another
example of a model tackling the task of restoration
of ancient Greek inscriptions was Ithaca (Assael et
al,, 2022). Crucially, Ithaca, using a transformer-
based architecture, can be deployed to enhance
and elevate the work of historians. When historians
were assigned with the task of text restoration, their
accuracy rose from 25% to 72% when not using
and using Ithaca respectively. In terms of the other
tasks Ithaca was trained on, namely geographic
and chronological determination, on the former its
accuracy was demonstrated to be 71% and on the
latter, it managed to only deviate by 30 years from

the ground-truth-assigned date (Assael et al., 2022).

Ithaca was also made available as an interactive
Python notebook and on GitHub.

In Asia, an example of DL to decode ancient

Chinese inscriptions was proposed by Wang
et al. (2025). These inscriptions could contain
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information on the Chinese economy, politics,
culture, and way of life. The team built and trained
a NN with a twofold objective: increasing the
efficiency of restoration tasks and promoting the
need for protection of items of cultural heritage.
Their pipeline used a combination of Natural
Language Processing (NLP) and Computer Vision
(CV) and was shown to perform better than
pipelines deploying only NLP or only CV (Z. Wang
et al., 2025). Another instance of an ancient
script being the object of an investigation into the
deciphering of ancient text has been a study on
artefacts from the Indus Valley Civilisation (IVC),
Harappan Civilisation, dating around 2600 BCE to
1900 BCE. Dixit et al. (2025) proposed a pipeline
which deploys three DL models to process and
archive Indus Script and extract Motif information.

By uncovering information about the human past,
societal ways of life and perceptions of the world
can be understood, and this unearthed evidence is a
testament to our historic continuity, either through
the discovery of sites or through the interpretation
of ancient written languages. The localisation

of sites is key in ensuring their conservation,
protection and restoration. Teams are already
using Al to leverage the volume of information
that resulted from the adoption of satellite and
LiDAR technologies. Similarly, Al has been deployed
to augment the task of restoring and attributing



inscriptions across a breadth of ancient languages.
So, it is clear that Al has and will shape how
archaeological evidence is not only found but also
incorporated to the existing body of knowledge.

3.5.1 DATA, MODELS AND
INFRASTRUCTURE

In archaeology, Al is revolutionising research
through advanced models, robust infrastructures,

and comprehensive databases. Al technologies
empower the analysis of virtual inscriptions,
enhancing the accuracy and preservation of
ancient texts. Additionally, Al-driven site detection
uncovers potential archaeological sites, optimising
exploration efforts. These advancements are
supported by dynamic databases that store

and integrate vast archaeological data, offering
deeper insights into past societies.

Table 7. Collection of datasets related to the fields of site detection and inscription restoration.

ela Datase ezt Reqio Re
AUIEE
Sentinel Y EU | Copernicus Sentinel Data>*
NASA'’s Earth Science Data and

ASTER GDEM v Us Information System (ESDIS)>®
Landsat-8 Y US | NASA/USGS Landsat Science®®

Site detection OpenTopography Y US | (Krishnan et al,, 2011)
EpHEMERA Y EU |EpHEMERA Project®’
Odyssey Spatial Data Infrastructure (SDI) Y UK [(Saetal, 2024)
OpenHistoryMap Y EU | (Bernardoni et al,, 2017)
ArchaeoSTOR Map Y US | (Matsui et al., 2012)
PHI Y US | Packard Humanities Institute (PHI)>®
Chinese Inscription Rubbing Image (CIRI) Y US | (S. Zhu et al,, 2024)
Epigraphic Database Roma (EDR) Y EU |EAGLE’s EDR Project™®

Inscription Asia Inscriptions Database Y UK | Asia Inscriptions Online (AlQ)s°

restoration Online Corpus of the Inscriptions from Ancient . , —
North Arabia (OCIANA) Y UK | Khalili Research Centre’s OCIANA Project’
Epigraphic Database of Ancient Asia Minor y gy | University of Hamburg Open-Access
(EDAK®?) Portal’s EDAK Database®®
Archaeology Data Service (ADS) Y UK | ADS Organisation®*

Other The Digital Archaeological Record (tDAR) Y us g:‘gzlggla Aittai‘(;ﬁigynlxzziéﬁy:eggzittrgr;g;
v | o | et corte o et e

Source: JRC’s own elaboration.

54 https://dataspace.copernicus.eu/data-collections/copernicus-sentinel-data/.

55 https://www.earthdata.nasa.gov/about/esdis/.
56 https://landsat.gsfc.nasa.gov/.
57 https://ephemera.cyi.ac.cy/about/.

58 https://packhum.org/.
59 http://www.edr-edr.it/.

80 https://siddham.network/about/.
61 https://krc.web.ox.ac.uk/article/ociana/.

62 Acronym from the original German resource name ‘Epigraphische Datenbank zum Antiken Kleinasien’.

65 https://www.oa.uni-hamburg.de/datenbanken/epigraphik.html/.

64 https://archaeologydataservice.ac.uk/.

5 https://www.tdar.ora/.

56 The Dutch national centre of expertise and repository for research data is called DANS, which stands for ‘Data Archiving and
Networked Services'. The dataset is available here: https://dans.knaw.nl/en/archaeology/.
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Table 7 provides a summary of some datasets
used in the archaeological field. It demonstrates
the diverse range of data sources used, such as
textual corpora, satellite imagery and LiDAR data,
and the different geographical characteristics

of the data sources. As pointed out by Gattiglia
(2025), training data in this field seems to be
limited as well as standards for data combination,
which contrast with previous use cases in the hard
sciences where researchers work and produce
substantial volumes of data. The same author also
argues that this is due to the existing ecosystem

of small research teams and existing barriers to
access such as copyright or poor metadata. In
order to tackle the fragmentation of data, the

EU funded the Integrating Activity Advanced
Research Infrastructure for Archaeological Dataset
Networking in Europe (ARIADNE).&” Building on

this, the ARIADNE project still supports and has
expanded its mission to make archaeological data
and services accessible to researchers. The ARIADNE
Portal contains the data registry and a service which
are employed to manage the datasets, collections,
vocabularies, metadata schemas and mappings. As
part of its services, the portal includes the option
to access compute infrastructure. Through the

87 The Dutch national centre of expertise and repository
for research data is called DANS, which stands for ‘Data
Archiving and Networked Services’. The dataset is available
here: https://dans.knaw.nl/en/archaeology/.

ARIADNE Plus Lab,s the research community can
process, visualise and analyse data from both the
ARIADNE registry as well as their own. Furthermore,
by accessing ARIADNE, landscape data can also

be generated and processed, using open-source
toolkits. These terrain datasets are designed for
visualisation in real-time and web streaming.s®
Moreover, the ARIADNE dataset is comprised of
data provided by researchers and organisations who
wish to make datasets available. This project has
more than 25 members”™ and the portal includes as
of July 2025 more than 4 million records, covering
a period from the earliest Hominids to the Cold

War and spanned four continents. An example

of infrastructure which supports the reusability

of data is DANS,” the collaboration between the
Royal Netherlands Academy of Arts and Sciences
and Dutch Research Council, which functions as

the national centre of expertise of the Netherlands
and repository for research data. It facilitates
researchers in making their data available for reuse,
promoting the initiation of new research endeavours
and enhancing the verifiability and reproducibility
of published studies, with a collection exceeding
300,000 datasets.

8 https://ariadne.d4science.org/web/ariadneplus lab/.
89 https://seth.itabc.cnr.it/services/landscape/.

70 https://www.ariadne-research-infrastructure.eu/partners/.

7L https://dans.knaw.nl/en/.

Table 8. A collection of examples of architectures reported to have been deployed in the fields of site detection and
inscription restoration, along with their respective application area.

Field Al Model and/or architecture

YOLOv3-based Multi-Scale Relief

Burial mound detection
Model (MSRM) + Random Forest (RF) | (Galicia, Spain)

Application

(Berganzo-Besga et al,,
2021)

RF-based model

Mound mapping (Cholistan desert, Pakistan) Y

(Orengo et al,, 2020)

Random Forest

Burial mound detection (Carnac, France)

Partial | (Guyot et al,, 2018)

Vision Transformer

Burial mound detection
(Alto Minho, Portugal)

N (Canedo et al.,, 2024)

Stone-walled structures detection
(Mpumalanga, South Africa)

Partial | (Mohlehli et al., 2023)

Site Support Vector Machines (SVMs)
detection

Structural remains detection
(Chun Castle, UK) 2021)

Partial (Kadhim and Abed,

CarcassonNet (CNN)

Hollow roads detection (the Netherlands) N

(Verschoof-van der
Vaart and Landauer,
2021)

U-Net (DL)

Ancient site detection
(southern Mesopotamia)

Y (Casini et al., 2023)

ChatGPT-3.5-based experiments
(prompt engineering)

Roman oil lamp typological investigation N

(Lapp and Lapp, 2024)
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Field Al Model and/or architecture

Pythia (sequence-to-sequence +
LSTM)

Ancient Greek text decoding Y

Application

(Assael et al., 2019)

o Ithaca (Transformer)
Inscription

Ancient Greek text decoding and
chronological and geographical attribution

Y (Assael et al., 2022)

restoration CIRoBERTa (NLP) + CISwin (CV)

Chinese character restoration N/A

(Z. Wang et al., 2025)

Ancient Script Recognition Network
(ASR-net) + Motif Identification
Network (MI-net)

IVC script and motifs extraction and
identification

Y (Dixit et al., 2025)

Source: JRC’s own elaboration.

Table 8 provides a summary of a set of

selected Al models and application tasks used

in archaeological research. It demonstrates

the variety of Al techniques employed, ranging
from traditional ML algorithms to DL and LLMs,
learning from diverse data modalities, including
text, images or LiDAR data. Especially in the case
of voluminous satellite or LiDAR data, dedicated
infrastructure is necessary to host and visualise
it, making it accessible to researchers. Along

this axis, McCoy (2017) discussed the volume of
geospatial data captured with satellite imagery
and LiDAR can be challenging to handle. An open-
access, 3D interactive online geo-database of
architectural and archaeological heritage sites
located in the Southeastern Mediterranean basin
is the Online 3D Database System for Endangered
architectural and archaeological Heritage in the
south Eastern MEditerRAnean area (EpHEMERA),
developed by the Cyprus Institute’s Science and
Technology in Archaeology and Culture Research
Centre (STARC). This service allows users to
visualise the structures, query the database

and access geometric and morphological
information. The database hosts structures from
archaeological excavations, ancient buildings,
archaeological areas. In order to support domain
experts in handling Geospatial data, like LiDAR,

a platform which integrated this data with a
processing environment was created, the Odyssey
Spatial Data Infrastructure (SDI) (Sa et al,,

2024). The platform focuses on data concerning
archaeological sites and offers functionalities to
annotate, validate and visualise the spatial data.
Through this work, it is possible to process remote
sensing data and build ML algorithms. Other
examples that fall under platforms that make
archaeological geodata available on the web are
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OpenHistoryMap (Bernardoni et al., 2017) and
ArchaeoSTOR map (Matsui et al., 2012), which

is a testament to the need for such platforms in
order to have readily-accessible tools and ways to
visualise such high volume of information.

Albeit different tasks, both site detection and
inscription restoration rely on the availability

of extensive datasets and appropriate
infrastructure for the processing of this data and
the augmentation of the work of the research
community with the deployment of Al models. In
turn, teams investigating the potential of such
models have proposed a variety of architectures,
ranging from machine learning to Deep Neural
Networks (DNNs). An examination of an array

of examples across the two tasks revealed the
common needs that emerge, in terms of compute
and data storage infrastructure, and the role that
platforms that allow the processing of complex,
fragmented, multi-source and multi-modal

data can play in making Al experimentation and
adoption more accessible.

3.2.2 SAFE AND TRUSTWORTHY A,
ETHICAL CONSIDERATIONS AND
CHALLENGES

Together, the presented studies exemplify

how Al-enabled methods are expanding the
interpretative capabilities of archaeology beyond
the traditional methodologies. The integration of
Al in archaeology, supported by the EU’s Horizon
Europe program, has the potential to revolutionise
the field. However, as Al-driven discoveries
become more prevalent, it is essential to

prioritise ethical considerations, such as cultural



sensitivity, heritage protection and community
involvement (UNESCO, 2022). Through those
recommendations, UNESCO urged member states
to incorporate Al systems, where appropriate,

in the preservation, enrichment, understanding,
promotion, management and accessibility of
tangible, documentary and intangible cultural
heritage (UNESCO, 2022). At the same time,
Horizon Europe emphasises the importance of
responsible and human-centric development

and use of Al in science, which can be applied

to various sectors, including cultural heritage
(European Commission: Directorate General for
Research and Innovation, 2024). In this context,
several projects have been funded by Horizon
Europe program to ensure security and protection
of cultural heritage, such as RITHMS?2 (Research,
Intelligence and Technology for Heritage and
Market Security), ANCHISE” (Applying New
solutions for Cultural Heritage protection by
Innovative, Scientific, social and economic
Engagement), ENIGMA™ (Endorsing safeguarding,
protection, and provenance management

of cultural heritage) and AURORA? (Artwork
Unique RecognitiOn and tRacking through
chemicAl encoded data, miniaturised devices and
blockchain alliance).

Regarding data, Gattiglia (2025) discusses the
human interpretation and action involved in the
so-called ‘travelling of data’, i.e. from primary
data (unprocessed data coming from the direct
observation of the archaeological evidence) to
secondary data (processed data made available
for re-use) and to tertiary data (interpreted

data derived from other researcher’s analysis
and reuse). In this respect, and in addition to
concerns pertaining to the ‘reductionist approach’
of creating Al-ready data, the same contribution
mentions that the creation of datasets is neither
a neutral nor a purely technical process but
incorporates political, cultural and social choices.
These considerations are particularly relevant in
disciplines with strong cultural grounds. The CARE

72 https://rithms.eu/.

73 https://www.anchise.eu/.

74 https://eu-enigma.eu/.

75 https://www.aurora-euproject.eu/.
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and FAIR principles serve as vital frameworks for
guiding the ethical and efficient management of
data, addressing both cultural sensitivities and
technical standards (Carroll et al., 2021):

— The FAIR (Findable, Accessible, Interoperable
and Reusable) principles are a set of
guidelines designed to improve the
management and sharing of data. These
criteria aim to enhance data transparency
and usability, making it easier for
researchers and organisations to access,
integrate and apply data across various
fields and disciplines (Wilkinson et al.,
2016). By adhering to FAIR, data are
effectively managed and shared, promoting
a more open and collaborative scientific
environment.

— The CARE (Collective benefit, Authority
to control, Responsibility and Ethics)
principles for Indigenous data governance
ensure that Indigenous data are managed
respectfully, aligning with Indigenous rights
and perspectives (Carroll et al., 2020).
By adopting these guidelines, institutions
and researchers can foster respectful and
equitable partnerships with Indigenous
communities.

As a result, despite recent advances in Al uptake
in this field, broader integration of Al into
archaeology remains limited. Bellat et al. (2025)
reviewed ML studies in archaeology published
between 1997 and 2022 (excluding LLMs) and
found that the field is dominated by supervised
classification models, particularly artificial NNs
and ensemble learning techniques, which together
account for nearly two-thirds of applications.
The most common use cases involve automatic
structure detection and artefact classification,
while more interpretive applications such as
taphonomic analysis or predictive modelling
remain rare. Moreover, the authors conclude
that a major limitation lies in the narrow focus
of many ML applications. Rather than advancing
theory-driven interpretation, most studies
concentrate on data processing tasks, revealing
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a persistent gap between computational Al
methods and archaeological thinking. Bridging
this gap is essential to fully integrate Al into
interpretive archaeological frameworks.

Further challenges in this domain have been
identified regarding the adoption of Al and the
connected concept of trustworthy Al (Gattiglia,
2025). About the former, concerns mainly

relate to data, in particular their availability,
fragmentation and large volume, which introduce
complications when attempting to combine sources
of information. Moreover, there is an inherent
complexity in the artefacts and sites themselves
due to their patterns and the influence of external
factors such as human actions and natural
processes. Overcoming biases in the dataset and
assigning chronological and geographical attributes
also hinder the data processing process. Concerning
the latter challenge about Al in archaeology,
transparency constitutes a crucial ethical aspect. A
comprehensive understanding of data distortions
and the operational principles of Al algorithms is
essential for archaeologists to establish trust in

a system’s outputs and integrate the results into
their research studies. The application of Al models
in the interpretation of archaeological findings
underscores the importance of explainability

and transparency, particularly with regard to
potential biases inherent in the underlying data.
Failure to address these concerns may result in
the perpetuation of biases and the solidification

of flawed interpretations as historical facts,
thereby undermining efforts to redefine the field
and challenge existing power dynamics. Notably,

a recent study (Montgomery and Fryer, 2023)

has sought to critically examine and challenge
dominant power structures in archaeology,

with a specific focus on collaborative research
methodologies informed by decolonisation and
Black feminist perspectives.

3.3.3 SKILLS AND INNOVATION

Although the use of Al is driven by the analysis of
different data sources and time scales, they all
rely on integrating qualitative and quantitative
methods. Archaeology, in particular, exemplifies
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the scientific value of interdisciplinary synthesis.
According to Gattiglia (2025), the successful uptake
of Al in archaeology requires interdisciplinarity
collaboration between computer scientists and
archaeologists to bridge the knowledge gap

and develop robust tools and methodologies. As
discussed, there are specific web servers dedicated
to improving the accessibility and processing of
archaeological big data. Along with this, the ability
to understand the fundamentals of Al models
and be in a position of using their capabilities

is becoming of increasing importance. Yet, at

the same time, the cultivation of a high level of
scientific domain expertise is critical. Thus, the
‘archaeologist of tomorrow’ has a strong scientific
knowledge, while at the same time can navigate
tools that can accelerate their workflow, like web
servers, databases and Al models. Representative
studies suggest how the adoption of an Al model
enhances the work of a scientist in inscription
attribution (Assael et al., 2022). This combination
of disciplines is not novel in archaeology, since

it has long constituted a convergence point of
scientists with backgrounds in physics, chemistry,
biology, computer science and the humanities to
reconstruct the past from incomplete and diverse
evidence. With the accelerating increase in the
production of data and types of data that are able
to be captured, the ability for efficient archival
search remains fundamental and relates to both
the ability to retrieve information from physical
and digital sources.

A demonstration of how vast the shift is in regard
to skills for a future archaeologist is the breadth of
innovations that have already been implemented
in the field. Examples of those changes are data
management systems that enable a Geographic
Information System (GIS) to be accessed via a
mobile phone, the introduction of robotics and
the deployment of Al across multiple tasks along
with existing methodologies. Virtual Reality (VR)
and Augmented Reality (AR) are being explored

in order to contextualise the discoveries and
leverage this technology to support educational
ventures. Combining two of the afore-mentioned
innovations is the ‘Reconstructing the Past:
Artificial Intelligence and Robotics meet Cultural



Heritage’ (RePAIR) project,’ which is driven by the
Ca’ Foscari University of Venice, the Ben-Gurion
University of the Negev of Israel and the Italian
Institute of Technology and supported partially

by EU funds. The aim of the project was to deploy
robotics, CV and Al modes for cases of a high
degree of fragmentation, which would have

made the restoration unfeasible for operators,
despite the availability of specialised software. As
discussed, Google DeepMind has been involved, in
collaboration with academia, in the development
of Ithaca, to restore and attribute ancient Greek
inscriptions (Assael et al., 2022). These examples
highlight the achievements as well as the
possibilities for accelerating innovation within the
field of archaeology, driven by the whole ecosystem
of academia, large organisations and startups and
how the synergies observed are in line with the
projection of the future-ready archaeologist, which
rests on deep expertise and interdisciplinarity.

3.3.4 RESEARCH COMMUNITY

The application of Al to ancient site discovery and
virtual inscription restoration is emerging as a niche
but highly interdisciplinary field. It brings together
archaeology, epigraphy, computational linguistics,
remote sensing and ML, with the goal of enhancing

76 https://www.repairproject.eu/.

the documentation, interpretation and preservation
of cultural heritage. Progress in this domain has
been made possible by the convergence of digitised
corpora, imaging technologies and Al techniques,

as well as by collaborative efforts spanning
humanities research institutions, computer science
labs and public heritage infrastructures. To explore
the development of this research community, 315
publications indexed in Scopus between January
2020 and May 2025 (retrieved following the
methodology described in Section 1.3) are examined
by filtering for articles, reviews and conference
papers containing the keywords the keywords
described in Table 1. This analysis provides a
quantitative snapshot of the field’s geographical
distribution (Figure 34), institutional diversity (Figure
35 and Figure 36) and collaborative patterns across
regions and sectors (Figure 37).

In terms of geographical distribution (Figure 34),
research in this area is strongly concentrated

in the EU, which accounts for 196 publications
(62.29%). Other contributing regions include the
UK (16; 5.1%), the US (15; 4.8%), Switzerland

(8; 2.5%), and China (6; 1.9%). This distribution
reflects the EU’s leading investment in cultural
heritage research infrastructures, as well as

its long-standing academic networks in digital
archaeology and epigraphy.

Figure 34. Global geographical distributions of scientific literature contributions related to ‘ancient site discovery’ and
‘virtual inscriptions restoration’ topics, indexed by Scopus between Jan. 2020 and May 2025.
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At the global level, research in this field is largely
led by educational and academic institutions,
which account for the vast majority of
contributions (Figure 35). A more detailed analysis
of the European landscape confirms this trend:
within the EU, most publications originate from
universities, followed by non-profit organisations,
public research facilities, government bodies, and

less prominently, private companies (Figure 36).
This distribution reflects the strong anchoring
of the field within the academic and cultural
heritage sectors. The availability of digitised
archives, shared infrastructure and open-source
tools has enabled widespread participation,
even among institutions with limited access to
advanced computational resources.

Figure 35. Distribution of ‘ancient site discovery’ and ‘virtual inscriptions restoration’ literature contributions by type
of establishments and geographical area. Considered contributions are indexed by Scopus between Jan. 2020 and

May 2025.
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Figure 36. Amount of ‘ancient site discovery’ and ‘virtual inscriptions restoration’ literature contributions across
EU countries by type of establishments over the years from Jan. 2020 to May 2025. Considered contributions are

indexed by Scopus.
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Beyond institutional diversity, collaboration collaborations occur between educational

networks also shape the research landscape in institutions and non-profit organisations, as
this domain. Due to the strong concentration of well as between universities and government
activity in the EU, cross-regional collaborations bodies (Figure 37(b)). These patterns reflect the
are relatively modest in scale but most commonly academic anchoring of the field and its strong
involve partnerships with the UK, the US, ties to the public and cultural heritage sectors,
Switzerland and Canada (Figure 37(a)). At the with comparatively limited engagement from

institutional level within the EU, the most frequent commercial actors.

Figure 37. Collaboration patterns in ‘ancient site discovery’ and ‘virtual inscriptions restoration’ fields. Amount of
co-authored literature contributions by (a) geographical area and (b) type of establishments (only EU). Considered
contributions are indexed by Scopus between Jan. 2020 and May 2025.
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Ancient site discovery and virtual restoration of inscriptions: Take-home messages

Al-driven methodologies, such as the analysis of remote sensing data (LiDAR and satellite
imagery) and the application of DNNs, are significantly enhancing the discovery and
preservation of archaeological sites and cultural heritage.

In the field of epigraphy, Al models have demonstrated the ability to surpass human
performance in tasks such as restoring partially damaged ancient inscriptions, providing a
powerful new tool for historical research.

This is a highly interdisciplinary domain, with a research community strongly anchored in EU
and supported by initiatives like ARIADNE, which focuses on federating fragmented data and
making it more accessible to researchers.

The primary challenges involve overcoming data fragmentation and ensuring ethical
considerations, particularly those related to cultural sensitivity and bias, are at the forefront
of Al deployment.
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4

CHALLENGES AND
OPPORTUNITIES



The assessment of the use of Artificial
Intelligence (Al) in science reveals that Al is
already a widely used technology by researchers
in varied fields, tasks, disciplines and steps of
the scientific process. As an example, AlphaFold,
developed in the biology domain, and specifically
in the protein structure prediction field, showed
the potential of Al for the acceleration of drug
discovery, the enhancement of our understanding
of disease mechanisms, and the unlock of
innovative biotechnological applications. The

use of Al for scientific discovery is both an
opportunity to drive a new wave of innovation and
a complex policy challenge. Creating an enabling
environment for Al in science requires coordinated
action across funding frameworks, governance
mechanisms, infrastructure development and
talent strategies. These policy domains are
interconnected, and policy development is taking
place in an environment where technological
capabilities and research practices are shifting
(European Commission: Directorate General for
Research and Innovation and Montgomery, 2025).
National policies for Al in science must address
this complexity, as different patterns of adoption
reflect a range of technical, institutional, and
cultural influences (Bianchini et al., 2024).

In this section, the key opportunities and
challenges associated with the integration of Al
in scientific research are highlighted, and the
relevant ingredients necessary for a responsible
and effective uptake of Al technologies are
discussed, including the need for critical
evaluation, transparency and accountability.

4.1 Data, models and infrastructure

The access to high-quality data, computing
infrastructure and scientific models have been
found as the basic building blocks or facilitators
for the uptake of Al in science.

Scientific data is the main ingredient for the
development of Al models for science. Publicly
available databases, such as the Protein Data
Bank, discussed in Section 3.1, supported by the
European Molecular Biology Laboratory (EMBL),
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have been instrumental in the development of
cutting-edge models in the field. This dataset
exemplifies the strength of community-driven
and international collaboration for the building
of high-impact datasets. However, AlphaFold

and other protein structure prediction methods
suppose a big leap in accuracy but are far from
being perfect, due to constraints in the training
(experimental) data. As is well-supported by the
literature, the generation of scientific training
data and standards for data combination appears
to be more limited in certain fields of the social
sciences and computational humanities, such as
archaeology, in contrast with different research
areas in the hard sciences. As is well-supported
by the literature, the generation of scientific
training data and standards for data combination
appears to be more limited in certain fields of the
social sciences and computational humanities,
such as archaeology, in contrast with use cases
in the hard sciences. This disparity stems from
the distinct nature of their core challenges:

while hard sciences face obstacles related to

the physical world (Tang et al., 2025), hardware
(Desai et al,, 2025; Z. Liu et al., 2024) and the
need for explainable causal models (Makke

and Chawla, 2024), the social sciences and
humanities confront more fundamental issues

of inherent subjectivity (Bail, 2024), cultural

bias (Binz et al., 2025) and the nuanced, often
unquantifiable nature of their data (Xu et al.,
2024). Consequently, the ability of Al to generate
truly representative training data or to set
universal standards for combining qualitative,
context-dependent information is significantly
more constrained in these fields.

The training of scientific models from this data
often demands access to High-Performance
Computing (HPC) clusters and results in a

high resource cost, which is sometimes only
accessible to large laboratories. In this respect,
community resources and shared infrastructures
facilitate access and uptake even from European
laboratories or research fields that may have
small local computing budgets, as seen in all
analysed fields. There is as well research being
done to reduce model size leading to decrease



in infrastructure needs and related financial
and environmental cost. European Union (EU)
Initiatives such as the Al Factories” can act as
catalysts in the realisation of large-scale Al
projects in different scientific fields.

A key emerging trend is the development of
scientific foundation models. These are large,
General-Purpose Al (GPAI) models pre-trained

on vast, often multimodal, scientific datasets.
Unlike traditional models tailored for a single
task, foundation models are designed to learn
fundamental relationships and principles across
a broad scientific domain (e.g., molecular biology,
materials chemistry, or geospatial data) (Wang

et al,, 2023). This allows them to perform zero-
shot learning, i.e. solving new problems without
specific training, and facilitates transfer learning,
where a pre-trained model can be rapidly
adapted for a specialised task. For instance, a
model already trained on a massive corpus of
molecular structures and properties could be
fine-tuned to predict a novel material’s activity or
a protein’s drug-binding capability. While these
models promise to accelerate discovery, they also
bring new challenges. The immense resources
required for their development concentrate power
in a few large institutions, potentially creating
dependencies for the wider scientific community
(Binz et al., 2025). Ensuring these models

are developed under open science principles,

with shared data, weights and transparent
methodologies, is therefore critical for maintaining
an equitable and innovative research landscape.

Regarding the development of scientific Al models,
a varied set of Al techniques and approaches are
found in the literature, from the most traditional
to novel developments in Machine Learning (ML),
so not being restricted to recent developments in
foundation and Large Language Models (LLMs).
For instance, our analysis in Section 3.3 revealed
the use of different ML architectures, from
random forests to Deep Neural Networks (DNNs),
used in the archaeological field. Generative Al
(GenAl) models are the most promising ones in

77 https://diqital-strategy.ec.europa.eu/en/policies/ai-
factories/.
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the field of material discovery (see Section 3.2)
based on Generative Adversarial Networks (GANs),
Variational Autoencoders (VAEs) or autoregressive
transformers and diffusion models, and their size
is relatively moderate (i.e. five or six orders of
magnitude) compared to state-of-the-art LLMs.
However, these models are instrumental in several
scientific tasks, notably in literature review or
scientific writing, as discussed in Section 2. In
addition, ML techniques, when used in specific
scientific tasks, evolve and incorporate specific and
realistic contexts from that particular task. This is
the case for instance in automated models used
for protein design which incorporate molecular
context in which proteins function, as presented in
Section 3.1.

In terms of model sharing, it is observed that
scientific Al models are frequently released

as web tools, which lowers the infrastructure
barrier to entry for the use (not training) of
these models. In this context, and connected to
the concept of open science, the uptake of Al
brings the need to incorporate concepts linked
to open infrastructures, data and open-source Al
as facilitators for research reproducibility and to
lower the accessibility barrier. For instance, as
commented in Section 3.1, the protein structure
prediction field has in its heart the open science
principles, with models being trained on publicly
available data and in turn released as open-source
frameworks.

A disparity in resources exists between larger and
smaller countries, with many scientists in under-
resourced EU nations facing significant barriers

to access HPC resources and expertise ((European
Commission: Directorate General for Research and
Innovation, Group of Chief Scientific Advisors and
King, 2025; European Commission: Directorate
General for Research and Innovation and Groznik,
2025). This is exacerbated by the fact that few
countries have dedicated HPC facilities for Al, with
many still focused on traditional applications,
which can hinder Al research (European
Commission: Directorate General for Research and
Innovation, Group of Chief Scientific Advisors and
King, 2025). Industry dominance in computing
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resources also makes it easier for private
companies to attract talent and invest in research,
further widening the gap and raising concerns
about equitable access (Ahmed et al., 2023). The
immense resources required for the development
of scientific foundation models concentrate power
in a few large institutions, potentially creating
dependencies for the wider scientific community
(Binz et al., 2025).

4.2 Skills and innovation

The uptake of Al in science generates new
requirements for specialised expertise among
researchers and research teams. The analysis
on skills in the three selected deep dives (see
Section 3) agree on the need for hybrid (inter- and
multidisciplinary) teams that combine expertise
in engineering and computer sciences with
specific domain expertise, where full autonomy
does not have to be a goal in itself. This ensures
the factuality and soundness of scientific
findings, and the tailoring of approaches to
specific scientific data and research questions.
The future-ready research in protein structure
prediction, for instance, is proficient in both
structural biology and Al/HPC principles, and

the collaboration across establishments such

as the one between DeepMind and EMBL has
been shown to be crucial for Al innovation. The
example of the archaeology field, and similarities
in other social sciences domains, brings

together disciplines traditionally far in terms of
methodologies and approaches, making inter-
disciplinarity fundamental to the fields’ ability to
generate meaningful scientific insights.

However, talent strategies across EU face
significant challenges, including a lack of flexible
career progression pathways and difficulties in
retaining talent in research institutions due to
competition with the private sector (European
Commission: Directorate General for Research and
Innovation and Groznik, 2025). The skills needed
for Al in science span a wide range, from technical
Al capabilities to interdisciplinary collaboration and
data management. Without clear career directions
and adequate funding, the public sector struggles
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to compete with the lucrative opportunities offered
by big tech companies (European Commission,
Directorate General for Research and Innovation
and Groznik, 2025; Jurowetzki et al., 2025). This
challenge is particularly acute for ‘hybrid’ roles
that combine expertise in Al with deep scientific
domain-specific knowledge.

The EU has also launched several initiatives

aimed at fostering interdisciplinary collaboration
and digitally-enabled research in the arts and
humanities. For instance, the Digital Research
Infrastructure for the Arts and Humanities
(DARIAH)? brings together scholars from diverse
disciplines to support innovative research and
teaching methodologies across the arts and
humanities, covering fields such as the intersection
of Al and music, as well as the analysis and

linking of bibliographical data. To facilitate the
effective implementation of Al in various scientific
domains, a range of educational resources, toolkits,
encyclopaedias, standards and best practices have
been developed, providing a comprehensive set of
tools and guidelines for researchers and educators
to efficiently leverage Al in their daily work
activities. In this context, the EC’s Al Office has taken
several actions to promote Al literacy. It has notably
published a set of FAQs to assist stakeholders,
hosted webinars and created a living repository™ of
best practices to help organisations tailor training
to their staff. The Al Office is also rolling out broader
initiatives like the ‘Al SkillsAcademy’ under the Al
Continent Action Plan®

4.3 Ethical and legal considerations

The use of Al in scientific research raises a
variety of ethical and legal concerns that must

be addressed to ensure responsible development
and deployment. These concerns span issues such
as privacy and data protection, bias and fairness,
transparency and explainability, human oversight,
and the broader impact on environmental and

78 https://www.dariah.eu/.
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repository-foster-learning-and-exchange-ai-literacy.

80 https://digital-strategy.ec.europa.eu/en/factpages/ai-
continent-action-plan.
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societal well-being. These topics are closely
aligned with the seven key requirements defined
by the ‘Ethics Guidelines for Trustworthy Al’
(European Commission, Directorate-General

for Communications Networks, Content and
Technology and High-Level Expert Group on
Artificial Intelligence, 2019).

The European Research Area (ERA) Forum, a

key stakeholder body in the European research
landscape, has also highlighted several key
principles for the responsible use of GenAl

in research in their ‘Living guidelines on the
responsible use of generative Al in research’
(European Commission, Directorate General

for Research and Innovation, 2025). These
principles are built on the ‘European Code of
Conduct for Research Integrity’ (ALLEA, 2023)
and the already mentioned trustworthy Al
guidelines, and emphasise reliability, honesty,
respect and accountability. Acknowledging the
systemic pressures within the contemporary
research landscape, these guidelines affirm

the indispensable role of human oversight. Al
systems are to be regarded as instruments

in the research process, not as authors or co-
authors. Consequently, the researcher is directly
accountable for the validity and integrity of

their scientific output, a duty that includes
understanding and mitigating the tool’s limitations,
such as prompt bias (sycophantic behaviour) and
the generation of erroneous citations. This notion
of human responsibility intersects with several
already well-established research practices. For
example, researchers are accustomed to rigorous
ethical review procedures and data protection
regulations. However, the integration of Al requires
extending these frameworks to account for the
unique properties of algorithmic systems, such
as their opacity, dependence on training data and
probabilistic outputs.

Transparency is a core requirement. Researchers
must use Al tools transparently and disclose their
use in the research process, particularly when an
Al tool has a substantial impact on the results.
This includes being mindful of the stochastic
nature of GenAl, which can produce different
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outputs from the same input. Confidence scores,
uncertainty estimates and benchmarks are
already used in certain fields (e.g. protein structure
prediction; see Section 3.1) to support the
interpretability and reproducibility of Al-assisted
results. Another critical issue is Al interpretability,
that is, the ability for both researchers and
external observers to understand how an Al
system arrived at a specific output. A lack of
interpretability, particularly in black-box models
like NNs, can hinder scientific trust, limit peer
scrutiny and challenge reproducibility. This is vital
not only for scientific accountability but also for
interdisciplinary collaboration. Section 3.3 provides
an example where interpretability helps bridge
computational and archaeological thinking.

Bias and fairness are also prominent concerns.

In scientific research, algorithmic bias may
emerge from skewed training data, inappropriate
model assumptions or cultural and contextual
insensitivity (Purificato et al., 2024). In fields such
as archaeology, the geographical origin or cultural
background embedded in datasets may lead to
distorted outputs if not properly accounted for.
Moreover, Al systems can inadvertently reinforce
existing scientific hierarchies, marginalise
underrepresented methodologies or geographies,
and limit epistemic diversity. Bias and fairness
are also closely linked to the principle of

respect for colleagues, research participants,
society, ecosystems, cultural heritage and the
environment.

Data governance, including privacy and intellectual
property aspects, are also of paramount
importance. Researchers are responsible for
ensuring they have a clear legal basis for
processing any personal data, in line with EU

data protection rules, such as the General Data
Protection Regulation (GDPR) (Regulation (EU)
2016/679). In high-stakes domains, Al can pose
dual-use risks, where models developed for
scientific inquiry may be repurposed for harmful
or unintended applications. For example, advanced
protein structure models could facilitate protein
design applications with potential biosafety risks
(see Section 3.1). While organisations have begun



to assess and mitigate such risks, the fast pace of
Al development makes it difficult to anticipate all
possible downstream consequences.

From a regulatory perspective, the EU Al Act
(Regulation (EU) 2024/1689) introduces a new
legal framework for Al in Europe. While the act
includes a ‘research exemption’ (Art. 6) that
excludes scientific research from most obligations,
its provisions may still apply once research
outputs transition into deployable or marketable
systems. This raises important questions about
legal boundaries, responsibilities and oversight.
As a result, researchers should be supported
early on in considering compliance-by-design

and ethics-by-design approaches, to align their

Al systems with evolving requlatory frameworks
and ethical norms. These considerations suggest
that the ethical and legal dimensions of Al in
science are not static or external constraints but
active components of scientific quality, credibility,
and societal responsibility. In this context, it is
essential to acknowledge the potential risks
associated with the uncritical adoption of Al tools,
including the possibility of inventing references or
identifying spurious correlations, as highlighted
by recent studies (Buriak et al., 2023), which can
have significant consequences for the research
evaluation process and the integrity of scientific
research (Eriksson et al., 2025).

4 4 Social dimension of science

Beyond legal and ethical considerations, the
integration of Al in scientific research brings
profound societal implications. Al is not only
transforming how research is conducted but also
reshaping social structures, cultural practices
and public trust in science. This interplay has
been described in the literature as creating
‘algorithmically infused societies’ (Wagner et al.,
2021), where algorithmic systems act as bridges
between science and society, influencing how
information flows and decisions are made. In this
context, Computational Social Science (CSS) has
emerged as a key interdisciplinary field at the
intersection of Al and the social sciences. CSS
involves the application of Al and computational

80

methods to study, simulate and understand
complex social phenomena. It integrates tools
such as ML, Natural Language Processing (NLP)
and network analysis into disciplines including
sociology, psychology, economics, political science
and cognitive science (Conte et al,, 2012; Lazer et
al.,, 2009; Xu et al., 2024). This section explores
the dual perspective of Al as both a tool for
understanding society and a social force in itself.

— Psychology and cognitive sciences. LLMs
have been used to detect depressive
symptoms from social media data (K. Yang
et al., 2023), infer personality traits from
digital traces (Rao et al., 2023), and predict
short-term mental states using smartphone
and sensor data (Webb et al., 2025). In
online learning, Al has been used to create
adaptive learning systems that personalise
educational content and pace for students
(Buhler et al., 2025). While these tools aim
to improve learning outcomes, a societal
implication is the risk of entrenching
educational inequality if the models are
trained on biased data, perpetuating
existing performance gaps.

— Political science. LLMs have supported
media bias detection and political stance
classification, which can be a valuable
tool for researchers (Ziems et al., 2024).
However, the use of such models also has
a societal implication: if these Al tools are
used to curate news feeds of flag ‘biased’
content without transparency, they could
inadvertently shape public opinion and
political discourse, creating a new form of
algorithmic influence (Chioma and Lepe,
2024; Gandini et al,, 2025).

— Sociology. Al has enhanced hate speech and
misinformation detection. A relevant study
showed that LLMs can identify implicit
hate but may mislead users in borderline
cases (Huang et al., 2023), while another
combined framing theory with neural
networks to detect reframed narratives in
news content (G. Wang et al., 2025).



— Finance. Domain-specific LLMs trained
on financial corpora have demonstrated
strong performance on tasks like sentiment
analysis, classification and information
extraction in financial documents (S. Wu et
al., 2023).

— Linguistics. Al models are now powerful
tools for analysing vast linguistic corpora,
allowing researchers to study historical
language evolution (Liang et al., 2023) or
trace the spread of misinformation in new
ways (Saeidnia et al., 2025). However, these
same models, when used as translation
or communication tools, can homogenise
language and cultural nuances, potentially
leading to a loss of linguistic diversity over
time (Bella et al., 2024). This demonstrates
how a tool for scientific analysis can also
have a profound societal impact on cultural
heritage.

These examples underscore the dual role of Al

as both a tool for understanding society and a
social force in itself. As LLMs and other Al tools
are integrated into the practice of social science,
they bring with them opportunities for new forms
of analysis, but also risks of reinforcing biases,
reducing transparency and limiting contextual
understanding (T. Hu et al., 2024)particularly

the tendency to favor one’s own group (ingroup
solidarity. A critical societal implication of Al in
science is thus the need for multidisciplinary
oversight and collaboration. Technical experts,
social scientists, and ethicists must work together
to ensure that Al models and infrastructures
reflect human values, safeguard social equity, and
promote knowledge that benefits all members

of society. In doing so, scientific Al development
becomes not only a technical challenge but a
societal effort.

4.5 Collaborations

Al’s role in scientific research is driving new
forms of collaboration. This is largely due to

the need for interdisciplinary expertise, where
technical knowledge of Al must be combined with
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deep domain-specific understanding to produce
meaningful and reliable scientific outcomes. The
central role of academia in advancing the field is
clear, with a notable and growing contribution from
external partners, including industry stakeholders
such as start-ups and scale-ups, as well as

public research institutions. For instance, a 325%
increase in publications with private company
affiliations from 2020 to 2024 is observed in

the field of protein structure prediction (see
Section 3.1), along with an ecosystem of startups
specifically focused on leveraging advanced Al
tools to enhance materials discovery research (see
Section 3.2). This reflects the fact that industry is
catching up on the use of Al in science, especially in
recent years.

This interdisciplinarity, offering significant
opportunities in the Al in science field, should

be then embraced by research organisations,
funding agencies or scientific association for

the promotion of hybrid teams, evaluation
panels, projects and communities across
relevant disciplines. However, there are also
some associated challenges. The report’s deep
dives (Section 3) highlight the need to bridge
methodological and cultural divides between
disciplines that have traditionally operated in silos.
Technical experts and domain specialists must
overcome differences in language, values and
epistemic assumptions to co-create research that
is both computationally sound and contextually
relevant. As discussed in Section 4.4, Al, if

not carefully governed, can reinforce existing
scientific hierarchies or limit epistemic diversity
by favouring data-rich, well-established areas of
inquiry. This makes collaboration a vital tool for
ensuring that Al-driven science remains inclusive,
rigorous, and reflective of a diverse range of
perspectives.

The investigation conducted in this report

also reveals the critical role of collaboration
networks, involving educational institutions,
government bodies, research facilities, non-profit
organisations and private companies, as well as
the international dimension of scientific research
involving Al. Even though collaboration networks



might vary according to the discipline, EU-
affiliated researchers in the studied fields were
found to have a diverse array of collaborations
across establishment and borders, compared to
the other regions considered. Finally, international
cooperation is recognised as a pivotal component
of scientific progress, given that science is a
global endeavour that transcends national
boundaries and relies on the establishment of
research networks and collaborations across the
world.
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S,
CONCLUSIONS



This final section synthesises the science-for-
policy report’s findings and interprets them in the
context of the policy questions and objectives
presented at its outset. The study confirms that
Artificial Intelligence (Al) is a transformative,
interdisciplinary and international force, already
integrated into nearly all scientific disciplines.
While Al offers immense opportunities to
accelerate discovery and enhance research, its
responsible uptake requires a coordinated and
evidence-based approach to address significant
technical, interdisciplinary and ethical challenges.
The extensive analysis conducted across the
scientific process and in three distinct deep dives,
i.e. protein structure prediction, material discovery
and computational humanities (specifically
ancient site discovery and virtual restoration

of inscriptions) reveals several key findings

with potential policy implications supporting

the adoption of the European Strategy for Al in
Science.

First, the potential of Al is intrinsically linked

to the principles of open science. The

report demonstrates that publicly available

data repositories, open-source models and
collaborative infrastructures, such as the Protein
Data Bank (PDB) and the materials databases
discussed, have been instrumental in driving
breakthroughs. Moreover, Al models have proven
highly effective at automated data processing
and pattern recognition, enabling researchers
to efficiently analyse large multimodal datasets
far beyond human capability, as seen in fields
from genomics to astronomy. The report also
notes the emerging trend of Al serving as a ‘co-
scientist’ in hypothesis generation, accelerating
literature analysis and suggesting novel ideas.
Therefore, to sustain this pace of innovation

and ensure reproducibility, policy actions should
prioritise expanding and supporting these open
ecosystems.

Second, the study highlights a growing
demand for robust computational and data
infrastructure. Advanced Al models, like the
examined fields of protein structure prediction
and material discovery, require significant
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resources for training and deployment. This need
for High-Performance Computing (HPC) presents
a strategic challenge and an opportunity for the
EU to secure its leadership position in Al research.
Targeted investment in these areas is essential to
prevent a widening resource gap between large
institutions and smaller research teams across
the EU.

Third, the integration of Al necessitates the
cultivation of a multidisciplinary talent base.
As demonstrated by the report’s deep dives,

the most impactful research occurs at the
intersection of Al expertise and deep domain-
specific knowledge. The ‘future-ready researcher’
or ‘future-ready research teams’ is not only
proficient in a scientific discipline but also skilled
in data science and software engineering. This
combination is crucial for effectively leveraging
Al in tasks like experiment design and
optimisation, where Al systems can accelerate
and automate hypothesis testing in ‘self-driving
labs’. Policy should address the challenges of
retaining such ‘hybrid’ talent in the public sector
by offering competitive career paths and fostering
interdisciplinary training programs.

Finally, while Al is widely recognised as a powerful
tool, it is not without its risks. The report identifies
concerns such as algorithmic bias, the potential
for Al models to generate fabricated data (called
‘hallucinations’) and the risk of reinforcing
existing paradigms, leading to the so-called
‘epistemic drift’. These ethical considerations
must be at the forefront of Al governance. This is
particularly relevant in biology, where Al models
for protein structure prediction are now used in
lab settings, but their adoption in clinical practice
remains limited due to the need for models that
can accurately account for real-life conditions.
The identified societal risks are also evident

in the communication of results, where Al-
assisted writing tools, while efficient, raise critical
questions about authorship, originality and the
trustworthiness of generated content.
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