
The Role of Artificial 
Intelligence in Scientific 
Research

Joint Research Centre

A Science for Policy, European Perspective

Purificato, E., Bili, D., Jungnickel, R., Ruiz Serra, V., Fabiani, J., 
Abendroth Dias, K., Fernandez Llorca, D., Gomez, E.

2025



This document is a publication by the Joint Research Centre (JRC), the European Commission’s science 
and knowledge service. It aims to provide evidence-based scientific support to the European policymaking 
process. The contents of this publication do not necessarily reflect the position or opinion of the European 
Commission. Neither the European Commission nor any person acting on behalf of the Commission is 
responsible for the use that might be made of this publication. For information on the methodology and 
quality underlying the data used in this publication for which the source is neither Eurostat nor other 
Commission services, users should contact the referenced source. The designations employed and the 
presentation of material on the maps do not imply the expression of any opinion whatsoever on the 
part of the European Union concerning the legal status of any country, territory, city or area or of its 
authorities, or concerning the delimitation of its frontiers or boundaries.

The Joint Research Centre: EU Science Hub 
https://joint-research-centre.ec.europa.eu

JRC143482 
EUR 40448 

Print      ISBN 978-92-68-31540-8     ISSN 1018-5593     doi:10.2760/3050242     KJ-01-25-455-EN-C
PDF       ISBN 978-92-68-31427-2     ISSN 1831-9424     doi:10.2760/7217497     KJ-01-25-455-EN-N

Luxembourg: Publications Office of the European Union, 2025

© European Union, 2025

Some content was created using GPT@JRC

The reuse policy of the European Commission documents is implemented by the Commission Decision 
2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). 
Unless otherwise noted, the reuse of this document is authorised under the Creative Commons Attribution 
4.0 International (CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/). This means that reuse is 
allowed provided appropriate credit is given and any changes are indicated.

For any use or reproduction of photos or other material that is not owned by the European Union 
permission must be sought directly from the copyright holders.

Cover page illustration, © DDOK / stock.adobe.com

How to cite this report: Purificato, E., Bili, D., Jungnickel, R., Ruiz Serra, V., Fabiani, J. et al., The Role of 
Artificial Intelligence in Scientific Research - A Science for Policy, European Perspective, Publications Office 
of the European Union, Luxembourg, 2025, https://data.europa.eu/doi/10.2760/7217497, JRC143482.

Layout: Carmen Capote de la Calle

https://joint-research-centre.ec.europa.eu
http://
http://stock.adobe.com
https://data.europa.eu/doi/10.2760/7217497


The Role of Artificial 
Intelligence in Scientific 
Research
A Science for Policy, European Perspective

Purificato, E., Bili, D., Jungnickel, R., Ruiz Serra, V., Fabiani, J., 
Abendroth Dias, K., Fernandez Llorca, D., Gomez, E.

2025



1

CONTENTS

5 CONCLUSIONS

1
1.1 Motivation and approach....................9

1.2 Artificial intelligence landscape.....10

INTRODUCTION 8

38

83

23

75

1.3 AI in science research community.....................16

1.4 Scientific process......................................................20

2
2.1 Ask a question (or make an 
observation)....................................................25

2.2 Conduct background research (or a 
literature review)...........................................26

2.3 Construct a hypothesis......................27

2.4 Test your hypothesis by performing 
an experiment................................................29

ARTIFICIAL INTELLIGENCE IN THE SCIENTIFIC PROCESS
2.5 Analysing data from experimental results....30

2.6 Draw conclusions based on acceptance or 
rejection of the hypothesis...........................................32

2.7 Communicate results..............................................34

2.8 Build scientific community...................................35

3
3.1 Protein structure prediction.............39

3.2 Material discovery................................53

DEEP DIVES
3.3 Ancient site discovery and virtual restoration 
of inscriptions.....................................................................64

4
4.1 Data, models and infrastructure....76

4.2 Skills and innovation...........................78

4.3 Ethical and legal considerations.....78

CHALLENGES AND OPPORTUNITIES
4.4 Societal implications...............................................80

4.5 Collaborations............................................................81

Abstract.................................................................................................................................................................................................2

Foreword...............................................................................................................................................................................................3

Acknowledgements........................................................................................................................................................................4

Executive summary........................................................................................................................................................................5

References.........................................................................................................................................................................................85

List of abbreviations and definitions............................................................................................................................117

List of figures..............................................................................................................................................................................121

List of tables................................................................................................................................................................................123



2

ABSTRACT

Artificial Intelligence (AI) is fundamentally transforming the scientific process across all stages, from 
hypothesis generation and experimental design to data analysis, peer review and dissemination of 
results. In many research fields, such as the examined protein structure prediction, materials discovery 
and computational humanities, AI accelerates discovery, fosters interdisciplinary collaboration and 
enhances reproducibility, while improving access to advanced analytical and computational capabilities. 
These developments align with the European Union (EU)’s vision to make AI tools and infrastructure 
more accessible, strengthening research in areas of strategic importance such as climate change, 
health, and clean technologies. However, this progress introduces new challenges, including concerns 
about algorithmic bias, the proliferation of hallucinations and fabricated data, and the potential erosion 
of critical thinking skills. AI adoption remains uneven across scientific domains, and addressing these 
risks requires robust governance, transparency and alignment with open-science principles. This report 
serves as the scientific evidence base for the European Strategy for AI in Science, offering insights to 
help policymakers navigate the challenges and opportunities of AI. It supports efforts to maximize 
the benefits of AI for research excellence and competitiveness in the EU, while maintaining a firm 
commitment to ethical, inclusive, and European values.
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FOREWORD

Artificial Intelligence (AI) is transforming 
today’s scientific process, which is the engine 
driving human progress, in ways that could 
redefine who participates in, benefits from and 
has influence over discovery. From the initial 
stage of inquiry to the publication of results, 
AI is emerging as a vital tool in scientific 
discovery. This transformative potential, powered 
by sophisticated models and unprecedented 
computational capabilities, is expanding access 
to knowledge, lowering entry-barriers and 
accelerating breakthroughs from climate to 
health and clean technologies. Evidence-based 
policymaking is needed to navigate the paradigm 
shift underway, which carries major economic, 
societal and geopolitical implications.

The AI in Science report provides the scientific 
and technical foundation for the European 
Strategy for AI in Science, which aims to 
define policy priorities for the European Union 
(EU). Its main objective is to help policymakers 
maximise AI’s benefits for EU research excellence, 
innovation and competitiveness, while ensuring its 
deployment remains ethical, inclusive and aligned 
with core European values.

Drawing on deep dives into AI technology for 
protein structure prediction, material discovery 
and computational humanities, this report 
showcases how AI is accelerating innovation and 
strengthening EU research. Opportunities are 
emerging across the full scientific process, from 
data analysis to the generation of novel research 
hypotheses. By assessing their potential and 
impact, the report gathers invaluable insights 
to guide investments in crucial areas such as 
high-performance computing and open-science 
infrastructure. This research can thereby boost 
EU competitiveness at global level.

As AI becomes increasingly integrated in 
scientific research, it is important to stay 

mindful of the challenges we may face. The 
report brings significant concerns to light, such 
as algorithmic bias, the risk of “hallucinations” 
and the potential for AI to unintentionally limit 
the range of research questions being explored. 
To foster scientific integrity and maintain public 
trust, we must approach AI in science with a 
deep commitment to robust governance and a 
collective vision that emphasises transparency 
and inclusivity in our scientific practices. 

We welcome this report as a timely and 
crucial contribution to our understanding 
of AI in science. It shows the Commission’s 
commitment to knowledge-based policy-
making. This document is a key resource for a 
coordinated policy approach as well as a call to 
collaboration across the scientific community, 
through shared infrastructures, open-source AI 
and transparent standards. These efforts would 
make AI-generated results more trustworthy 
and consistent, supporting a successful 
implementation of AI in scientific developments. 

Bernard Magenhann  
Director-General 
European Commission 
Joint Research Centre
(JRC)

Marc Lemaître  
Director-General 
European Commission
Research and Innovation 
(RTD)
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EXECUTIVE
SUMMARY

This report provides a scientific and technical 
analysis of the role of Artificial Intelligence (AI) 
in science and the scientific process, offering 
evidence-based insights to guide strategic 
decisions. It explores how a wide range of AI 
techniques, particularly Machine Learning (ML), 
Deep Learning (DL) and Generative AI (GenAI), 
are reshaping every stage of research, from 
hypothesis generation to result publication and 
community building.

Policy context

AI is reshaping science at an unprecedented 
pace, transforming how knowledge is generated, 
experiments are designed, and results are shared. 
The European Union (EU) is already addressing 
the broader governance of AI through initiatives 
such as the EU AI Act, which establishes rules 
to ensure that AI systems used within the EU are 
safe and respect fundamental rights and values, 
along with foster trustworthy AI by setting clear, 
risk-based rules for AI developers and deployers. 
In parallel, there is a growing need to facilitate 
and accelerate the responsible uptake of AI in 
scientific research. The European Strategy for 
AI in Science responds to this need by aiming 
to develop and improve access to AI tools and 
computing infrastructure, attract and develop 
talent, and strengthen research in strategic 
areas such as climate change, health, and clean 
technologies. This report provides evidence on 
how AI is transforming the scientific process, 
the opportunities it offers, and the challenges it 
presents. It supports the implementation of the 
strategy by informing policymakers about the 
practical implications of AI for research integrity, 
innovation and EU’s competitiveness.

Key conclusions

The analysis conducted in the report confirms 
that AI has transformative potential across 
every stage of the scientific process. These 
capabilities allow researchers to identify patterns 
and relationships that would otherwise remain 
hidden, fostering scientific breakthroughs and 
expanding interdisciplinary collaboration. However, 
the impact of AI is not inherently positive; it 
highly depends on the conditions under which it 
is deployed and governed. The derived findings 
point to three main areas where policy actions 
are needed to ensure AI fulfils its potential while 
safeguarding the integrity of science.

Firstly, the findings reinforce that open science 
principles (including open data, open models and 
open infrastructure) are paramount for fostering 
innovation and ensuring the reproducibility 
and trustworthiness of AI-driven research. 
Policy support can expand and sustain these 
ecosystems, ensuring a fair and sustainable 
access to the required tools.

Secondly, the report highlights the growing 
challenge of computational and data 
infrastructure. While AI models are becoming 
more powerful and versatile, they also require 
significant resources for training and deployment. 
This makes investment in High-Performance 
Computing (HPC), AI Factories and open scientific 
data repositories essential to secure the EU’s 
position as a leader in AI research.

Third, the integration of AI demands a new 
skill set for researchers. The most impactful 
research emerges from ‘hybrid’ roles and teams 
that combine deep scientific domain knowledge 
with proficiency in AI and data science methods. 
Policies should therefore focus on attracting, 
developing and retaining this interdisciplinary 
talent to ensure that human expertise remains 
central to the research process.

Finally, a new problem has been identified: the 
risk of epistemic drift. This phenomenon, driven 
by the co-creation of knowledge with machines, 
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refers to a fundamental shift in what is considered 
valid scientific knowledge and how it is produced. 
This can manifest in two ways: as AI technologies 
inadvertently reinforces established research 
paradigms and narrows the diversity of questions 
explored, or as AI technology fosters a culture 
where scientific conclusions are separated from 
their human sources and authors, meaning that 
knowledge production is detached from human 
oversight and control . AI can also produce 
fabricated information or ‘hallucinations’, which, if 
undetected, may distort scientific understanding. 
Addressing these issues requires policies 
that promote AI literacy, critical thinking and 
multidisciplinary collaboration to ensure human 
expertise remains central. By proactively mitigating 
these risks, the EU can safeguard the integrity of the 
scientific process and foster public trust in science.

Main findings

AI is reshaping research by becoming a 
collaborative partner in knowledge production 
and assisting at every stage of the scientific 
process. It accelerates literature review and 
knowledge discovery, enables the generation of 
innovative hypotheses, supports more efficient 
and targeted experimental design, and facilitates 
the processing of complex, multimodal datasets. 
In particular, our main findings suggest that AI is 
transforming the scientific process of:

	– Asking questions and formulating 
hypotheses: AI is evolving from a passive 
tool into an ‘AI co-scientist’, assisting at the 
early stages of research by accelerating 
literature analysis and identifying 
knowledge gaps. This function fosters 
new ‘interdisciplinary collaborations’, as 
AI tools can synthesise information from 
diverse fields to propose novel and testable 
hypotheses. Large Language Models 
(LLMs) and other domain-specific systems, 
in all the steps of the scientific process, 
can bridge previously unrelated concepts, 
requiring human oversight to ensure 
validity and prevent biases towards well-
documented areas of research.

	– Designing and conducting experiments: 
AI enables automated experiment design, 
simulation and optimisation, improving 
efficiency and allowing for ‘self-driving 
labs’. AI tools can generate executable 
code for experiments and manage complex 
instruments in real-time. The Nobel Prize-
winning success of AlphaFold is a prime 
example of the transformative power of 
AI, accurately predicting protein structures 
and accelerating the testing of hypotheses 
about biological mechanisms. This allows 
scientists to explore larger experimental 
domains, but risks oversimplifying real-
world complexity.

	– Collecting and analysing data: AI 
processes vast, multimodal datasets to 
detect patterns beyond human capability, 
a process that has led to breakthroughs 
in fields like astronomy and genomics. 
AI-enhanced tools in archaeology analyse 
massive datasets from satellite and LiDAR 
imagery to discover new ancient sites. 
Building on this analytical capability, AI is 
also being used in materials discovery for 
a new paradigm called ‘inverse material 
design’, where the process of analysing 
properties from existing data is reversed 
to computationally generate new materials 
that match a desired set of properties . 
These processes might raise concerns about 
data quality, interpretability and the opacity 
of ‘black-box’ models.

	– Interpreting results and drawing 
conclusions: AI-driven methods assist in 
translating data into insights and formal 
theory but often lack transparency in their 
causal explanations. AI tools can act as 
a safeguard to ensure new findings are 
consistent with existing knowledge, aiding 
in verification.

	– Publishing and communicating 
findings: AI tools are increasingly used 
for scientific writing, including editing 
and summarisation, enhancing clarity 
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and breaking down language barriers. 
Automation supports drafting and 
visualisation, but raises questions about 
authorship, originality and trustworthiness.

Related and future Joint Research 
Centre work

This study was developed by different teams 
of the Joint Research Centre (JRC), specifically 
belonging to units F.7, T.1 and T.3 (in alphabetical 
order), and it was managed and overseen by 
the JRC.T.3’s Human Behaviour and Machine 
Intelligence (HUMAINT) team, whose work focuses 
on providing a multi-disciplinary understanding 
of the impact that AI systems have on human 
behaviour.

This report deliverable is part of the joint 
‘AI4Science’ project between JRC.T.3, DG RTD.E.4 
and the EU AI Office (specifically DG CNECT.A.2), 
which focuses on two different areas. On the 
one hand, the project analyses the impact of the 
AI Act on scientific research and outreach the 
EU scientific community on this aspect. On the 
other hand, the project provides scientific and 
technical support to DG RTD and EU AI Office 
policies intended to foster the use and uptake of 
AI in scientific research. Future JRC work related 
to the presented report will follow the described 
objectives.  

Quick guide

AI refers to machine-based systems that, 
for a given set of inputs and objectives, infer 
how to generate outputs like predictions or 
recommendations. The presented report analyses 
how these systems are used in scientific research. 
The methodology is mainly based on a broad 
review of scientific literature, focusing on the 
core steps of the scientific process. The report 
highlights that AI offers huge potential for 
accelerating discovery but comes with significant 
uncertainties, particularly concerning algorithmic 
bias, data quality and the risk of generating 
inaccurate information. The report begins with 
an introduction that provides a general overview 

of the role of AI in science and the report’s 
purpose. The core of the report consists of the 
study of the AI’s impact in the scientific process, 
which explores the recurring trends, challenges 
and limitations of using AI at each stage. It then 
delves into three deep dives, which examine how 
AI is being used in specific research fields, i.e. 
protein structure prediction, material discovery 
and computational archaeology, to illustrate its 
practical applications. The final chapters discuss 
the ethical, legal and societal implications of AI in 
science, including data, models and infrastructure, 
and conclude with final considerations and 
recommendations for the responsible uptake of AI 
in scientific research.
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INTRODUCTION



9

1.1 Motivation and approach

Recent developments in the Artificial 
Intelligence (AI) field are having a strong 
impact in many sectors and activities, being 
scientific research impacted in different steps 
and across disciplines. The rapid advancement of 
AI capabilities, evolving from traditional Machine 
Learning (ML) to contemporary Generative AI 
(GenAI) models, is fundamentally reshaping the 
way knowledge is created and disseminated. This 
transformation spans multiple fields, affecting 
the entire spectrum of scientific research and 
influencing everything from foundational studies 
to applied technologies.

The European Commission (EC) has recognised 
this transformative potential and has integrated 
the promotion of AI in Science into its general AI 
strategy, intended to harness AI’s vast potential 
while addressing relevant risks. On the one hand, 
the European Strategy for AI in Science2 intends 
to accelerate the adoption of AI by European 
Union (EU) scientists by creating essential enablers 
such as improved access to data, computational 
power and talent. On the other hand, the strategy 
addresses science-specific AI challenges such as 
preserving scientific integrity and methodological 
rigour (European Commission: Directorate General 
for Research and Innovation, 2023).

This report, authored by the EC’s scientific service, 
the Joint Research Centre (JRC), aims to provide 
scientific and technical evidence to the mentioned 
strategy. It specifically focuses on the use of AI 
in scientific research, highlighting aspects that 
are unique compared to its application in other 
contexts. The core policy problem addressed 
by this report focus on navigating the rapid 
transformation of scientific research driven by AI. It 
seeks to answer the crucial question of maximising 
the benefits of AI for EU research excellence, 
innovation and competitiveness, while ensuring 
that its deployment remains ethical, inclusive, and 
aligned with EU values. A significant challenge 

2  https://research-and-innovation.ec.europa.eu/research-
area/industrial-research-and-innovation/artificial-
intelligence-ai-science_en.

lies in fostering the adoption of AI techniques, 
which promise to accelerate discovery, enhance 
reproducibility and promote interdisciplinary 
collaboration. At the same time, it is essential to 
mitigate emerging risks such as algorithmic bias, 
the spread of fabricated data (often referred to as 
‘hallucinations’) and the potential erosion of critical 
thinking skills. These challenges are not uniform, 
however, and vary depending on the specific AI 
technology employed. For instance, the creation 
of spurious information is a limitation particularly 
inherent to Large Language Models (LLMs) and 
other Generative AI (GenAI) systems. This complex 
issue demands a nuanced, evidence-based 
approach due to the uneven adoption of AI across 
various scientific domains and the pressing need 
for robust governance.

The scope of this report matches the definition 
of AI system in the EU AI Act (Regulation (EU) 
2024/1689), which is in line with the one of the 
Organisation for Economic Co-operation and 
Development (OECD, 2024). The term AI system 
means a machine-based system that is designed 
to operate with varying levels of autonomy and 
that may exhibit adaptiveness after deployment, 
and that, for explicit or implicit objectives, infers, 
from the input it receives, how to generate outputs 
such as predictions, content, recommendations 
or decisions that can influence physical or virtual 
environments. In this respect, the report reviews 
the use of a varied set of AI techniques, including 
traditional machine learning approaches. However, 
this report puts a special emphasis on recent 
developments on AI, notably linked to Large LLMs 
or GenAI, as the reports addresses for instance their 
use to deal with large corpus of scientific literature 
or to support the writing of scientific publications.

The main objectives of this report are therefore 
to provide a structured, evidence-based analysis 
that informs and supports the EU’s strategic 
decisions. To this end, the report:

	– Presents an overview of the current 
landscape of AI in science and the core 
stages of the scientific process.

https://research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/artificial-intelligence-ai-science_en
https://research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/artificial-intelligence-ai-science_en
https://research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/artificial-intelligence-ai-science_en
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	– Assesses the impact of AI across each 
step of the scientific process, identifying 
recurring trends, challenges, and limitations.

	– Provides a detailed analysis through 
three deep dives, i.e. protein structure 
prediction, material discovery and 
computational humanities (specifically 
ancient site discovery and virtual restoration 
of inscriptions) to illustrate the practical 
implications of AI use in diverse fields.

	– Extracts common challenges and 
opportunities from these case studies 
to formulate general conclusions and 
recommendations for the responsible 
uptake of AI in scientific research.

Figure 1. Visual structure of the report.
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Source: JRC’s own elaboration.

This structured approach ensures that the findings 
can be applied to identify policy problems. For 
instance, evidence on the computational and 
data demands of advanced AI models highlights 
the need for strategic investment in High-
Performance Computing (HPC) and open data 
repositories. Similarly, the detailed analysis of 
risks, such as fabricated data produced by GenAI 
models, underscores the need for policies that 
promote AI literacy, critical thinking and robust 
governance to safeguard the science integrity. 
This comprehensive analysis, illustrated by the 
structure in Figure 1, provides a relevant scientific 
and evidence-based support to the adoption of 
the European Strategy for AI in Science.

1.2 Artificial intelligence landscape

This section provides an overview of the overall 
AI landscape in the EU compared to key global 
competitors. The JRC’s Digital Techno-Economic 
Ecosystem (DGTES) methodology applied for this 
analysis of the European and global AI landscape 
combines and harmonises multiple data sources 
into a network database representation of the 
digital ecosystem.3 In particular, the methodology 
incorporates a wealth of economic indicators and 

3  https://joint-research-centre.ec.europa.eu/projects-and-
activities/digital-techno-economic-ecosystem-dgtes-
mapping-and-analysing-digital-and-other-industrial_en. 

micro-level information, encompassing industrial, 
geographical, and technologies dimensions.

The DGTES approach has been deeply developed 
to map the digital ecosystem, their elements and 
structure, resulting in the DGTES database (Calza 
et al., 2022, 2023). The outcome of the mapping 
exercise leads to a network of players connected 
through collaborative activities. A player is an 
organisation (academic institution, government 
body, or firm) that conducts research, innovates 
or has a business related to digital technologies.4 

4  In identifying players, emphasis is placed on organisations 
rather than individuals, i.e. the applicant or developing 

https://joint-research-centre.ec.europa.eu/projects-and-activities/digital-techno-economic-ecosystem-dgtes-mapping-and-analysing-digital-and-other-industrial_en
https://joint-research-centre.ec.europa.eu/projects-and-activities/digital-techno-economic-ecosystem-dgtes-mapping-and-analysing-digital-and-other-industrial_en
https://joint-research-centre.ec.europa.eu/projects-and-activities/digital-techno-economic-ecosystem-dgtes-mapping-and-analysing-digital-and-other-industrial_en
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These are the research, (patent-driven) innovation 
and business activities of the digital ecosystem. 
When more than one player contributes to 
the same activity, a link emerges between 
them, resulting in a network of collaborations. 
The analysis employs textual data describing 
organisational activities globally, identifying 
1.9 million entities involved in over 2.5 million 
relevant activities between 2009 and 2024.5

AI is at the core of the digital ecosystem, 
being the second largest technology out of 
15 in the ecosystem in terms of its related 
activities.6 These activities are identified by 
over 700 AI-related keywords entailing various 
technological solutions based on the principles of 
and contributing to the development of artificial 
intelligence, such as Natural Language Processing 
(NLP) and ML. This section presents analysis on 
EU’s competitiveness on AI, firm ownership, and 
venture capital investments to assess potential AI 
foreign funding dependencies in the EU.

The mapping exercise identifies 319 thousand 
global players engaged in AI during 2009-
2024, with over 80% concentrated in China, 
the US, and the EU (Figure 2). These players are 
research institutes, government bodies, and firms 
publishing scientific articles, filing for priority 
patents, or having their core business related to 
AI (henceforth, AI activities). Thus, each AI player 
has at least either its core business oriented to 
AI, a patent filed on AI, a publication on AI, or any 
combination of them. On this basis, one player 
can be linked to multiple activities. On average, AI 
players have 1.4 activities each.7

organisation in the context of patents, affiliation instead 
of individual authors in conference proceedings and 
publications. Companies’ subsidiaries (distinct legal entities) 
are considered separate players.
5  Data sources: Scopus, PATSTAT, Orbis, S&P Capital IQ, 
Crunchbase, Dealroom, and Dow Jones. Data on EU funded 
projects comes from CORDIS.
6  Digital Areas: 3D Printing; 5G; Advanced Computing, HPC; 
Artificial Intelligence (AI); Cloud Computing; Cybersecurity; 
Distributed Ledger Technologies (DLT); Dynamic Data; 
e-Commerce; Extended Reality; Internet of Things (IoT); Power 
Electronics; Quantum Technologies; Robotics; Verticals.
7  Data from DGTES database, as on 27 August 2025.

Figure 2. Global distribution of AI players by 
geographical area, in terms of the cumulative number 
of firms over 2009-2024.
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Source: JRC DGTES database.

By 2024, two in five global AI players had at least 
one research and innovation (R&I) activity, i.e. had 
filed for a patent on AI or published a scientific 
article on the topic. The share is similar across 
regions, with China displaying a slightly higher 
share than the US and EU (Figure 3). A closer look 
by separating research from innovation activities 
reveals that the EU has a larger composition of 
AI players with research activities (13% of all AI 
players) than the US (4%) and China (1%). Taken 
together, these findings unveil the relevance of 
innovation activities in the AI global landscape 
and the role of EU scientific output pushing the 
AI-knowledge frontier.

Figure 3. Number of AI players with and without 
R&I activities in the EU, US and China, in terms of 
the cumulative number of players over 2009-2024 
by region. Light-shaded areas represent the number 
of players with at least one AI-related R&I activity 
(innovation or research) and labels display their share 
with respect to all AI players in a geographical area.
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In analysing the EU’s global position in 
innovation, the data indicate that the EU 
contributes a relatively limited portion to the 
global patent landscape. As displayed in Figure 
4, out of more than 226 thousand patents 
related to AI filed from 2009 to 2024, only 3% 
were filed by EU players, positioning the EU 
behind China (76%), US (11%), and South Korea 
(7%).8 The disproportionate share of China on 
innovation activities is consistent with China’s 
patent promotion policies that encourage filing 
for patents which do not directly imply an 
improvement in innovation quality (Chen and 
Zhang, 2019; Long and Wang, 2019).

Figure 4. Number of AI-related patent applications by 
geographical area, in terms of the cumulative number 
of innovation activities over 2009-2024 by region.
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Source: JRC DGTES database.

Funding from the EC plays a crucial role in 
enhancing EU’s capabilities in AI. Because EU-
funded programmes are accessible only to EU 
Member States and a select few other countries, 
data from these programs is excluded from global 
comparisons for consistency. However, within 
the EU, programmes like the seventh Framework 
Programme (FP7), Horizon 2020 (H2020), and 
Horizon Europe (HE) have been instrumental in 
strengthening the EU’s AI ecosystem and fostering 

8  Differences between US and EU patent share partly reflect 
institutional rules. The United States Patent and Trademark 
Office (USPTO) has historically been more permissive 
toward software while the European Patent Office (EPO) 
requires a technical character. This leads to more software 
filings in the US than the EU (OECD, 2009).

networks of knowledge among participants (Righi 
et al., 2021).9

When considering EU-funded projects, the number 
of AI players increases by 46%, rising from 
almost 20000 to 28870, with a third of these 
players engaged in AI-related EU-funded activities 
(Figure 5). This underscores the impact of EU-
funded projects in supporting the European AI 
ecosystem, particularly in certain Member States. 
On average, 36% of AI players in each country 
are involved in AI-related EU-funded projects 
(Figure 6). For some countries the relevance of 
EU programmes for the AI ecosystem is even 
stronger. For instance, 64% of AI players in 
Greece participate in EU-funded AI projects. 
Similarly, Slovenia and Cyprus have more than 
half of their AI players involved exclusively in such 
programmes. 

Figure 5. Composition of AI-players in the EU by their 
participation in EU funded projects, in terms of the 
Cumulative number of AI players in the EU over 2009-
2024.

66%2%

32%
Players not participating in
EU funded projects with
research, innovation, or
business activities

Players participating in EU
funded projects with
research, innovation, or
business, activities

Players participating in EU
funded projects without
research, innovation, or
business, activities

AI players

Source: JRC DGTES database.

9  Righi et al. (2021) analyses the strategic position of 
EU countries in AI in R&I network compared to that once 
accounting for EU funded projects and finds that EC-funded 
programmes have reinforced the collaborations between 
players and countries within the EU.

28870
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Figure 6. Participation of AI-players in EU funded 
projects in EU27, in terms of share of AI players in the 
EU over 2009-2024 by country.
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Source: JRC DGTES database.

To assess strengths and potential dependencies 
on funding of EU in AI, the focus turns to the 
investment linkages between AI firms and other  
entities.10 In this setting, a firm is financially 
connected to another firm or entity (which may 
or may not be an AI-player) through two types 
of relationships: firm-owner and Venture Capital 
(VC) investor-investee. While these roles are 
interrelated, they represent distinct types of 
connections. A VC investor may influence a firm’s 
strategy without typically having legal control, 
whereas the firm-owner relationship identifies the 
entity with formal ownership and control rights, 
traced through direct and indirect shareholders. 
VC data is valuable for understanding funding 
dynamics, while ownership data is essential for 
mapping corporate control structures.

On the firm-owner link, the complexity of the 
dataset allows tracing the location of the global 
ultimate owner of one out of ten firms in the 
global AI ecosystem. The global ultimate owner 
is defined as that controlling over 50% of the 
shares of a company. Foreign-owned firms have a 
global ultimate owner located in another country. 
In the EU, a firm is foreign when the owner is 
located outside the EU, while ownerships between 
Member States are domestic. With 26% of firms 
with known ownership, the EU the region with the 
highest share of tracked ownership (this figure is 
9% for China and 15% for the US).

10  For the analysis of investments, the target are firms, 
leaving aside other types of players (research institutes 
and government bodies). The mapping identifies over 17 
thousand firms in the EU engaged in AI activities.

Nine out of ten EU-based firms on AI with 
known ownership data are domestically 
controlled. This ratio is taken from the over 4.4 
thousand EU-based firms on AI with available 
data on their global ultimate owner (26% of the 
total) as shown in Figure 7. A closer look at the 
data, shows that four countries concentrate 80% 
of global ultimate owners of the over 500 EU 
foreign-owned firms in AI (Figure 8). US entities 
control almost half of foreign-owned AI firms 
located in the EU. The UK hosts 17% of global 
ultimate owners, while 7% of firms have an owner 
in Switzerland and another 7% in Japan.

Figure 7. Ownership of EU-based AI firms: data 
coverage vs foreign composition. Data coverage allows 
tracing the global ultimate owner of 26% of identified 
AI firms based in the EU (pie chart). The bar shows the 
composition of domestic and foreign ownership of the 
firms with known ownership. Foreign ownership defined 
as the global ultimate owner holding more than 50% 
of shares. A firm located in the EU is foreign when the 
owner is outside the EU.

Firms with no 
traced ownership

74%

Foreign ownership
559

Domestic 
ownership

3917
26%

Source: JRC DGTES database. Data coverage as of 2024.

Figure 8. Foreign ownership of AI firms in the EU by 
country of the global ultimate owner. Foreign ownership 
defined as the global ultimate owner holding more than 
50% of shares. A firm located in the EU is foreign when 
the owner is outside the EU.
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Source: JRC DGTES database. Data coverage as of 2024.
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On the VC investor-investee link, the final 
dataset traces back funding received by firms 
worldwide with a total capital raised of EUR 74 
billion during 2009-2024. VC investment is a vital 
source of resources for innovative startups and 
small firms with high-growth potential, as they 
typically have limited access to traditional sources 
of financing.

AI firms in the EU have limited access to global 
venture capital funding, despite the various 
policy actions taken to foster VC investment.11 
Over 2009-2024,12 73% of global AI industry 
VC funding was directed to either US or Chinese 
firms (53% and 20%, respectively). Only 7% of 
all VC funding to AI firms during the period went 
to firms located in the EU (Figure 9), slightly 
surpassing the funds channelled to the UK 
based firms (5% of total). Since the outbreak 
of COVID-19 in 2020, VC investments in AI 
increased largely leading to a surge in funding 
for startups. The pandemic accelerated the 
digital transformation and applications of AI in 
multiple sectors such as healthcare and mobility 
and in 2021, global VC investments in AI reached 
a peak, driven mostly by US based and Chinese 
firms.

11  For firms engaged in other technologies besides AI, the 
total amount of VC funding received is weighted by the 
relevance of AI for the firm to avoid double counting in the 
whole digital ecosystem. The weight is then proportional to 
the number of AI keywords that trigger the appearance of 
the firm.
12  Examples of policy actions include the Regulation on 
European Venture Capital Funds (EUVeCa), the European 
Fund for Strategic Investment (EFSI), the Pan-European 
Venture Capital Fund-of-Funds programme (VentureEU), 
the European Scale-up Action for Risk capital (ESCALAR) 
programme and InvestEU.

Figure 9. Global VC investments by destination over 
2009-2024 (cumulative, EUR billion). The investment 
figures are weighted by the engagement of each firm in 
each technology area based on keywords frequency. VC 
investment rounds include angel, seed, pre-seed, series 
A- J and unknown types.
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Source: JRC DGTES database. VC funding to AI firms as 
identified by DGTES (Calza et al., 2022).

Figure 10 offers insights into how investment 
patterns evolve at different phases of business 
development across main recipient countries, 
highlighting where investors are focusing their 
resources within the AI sector over the last five 
years. Understanding these stages, ranging from 
early-stage rounds to later-stage investments, 
can shed light on the maturation process of 
AI firms and the confidence investors have in 
their growth potential.13 These data serve as a 
critical indicator of the dynamics within the AI 
startup landscape, illustrating both the scale 
of investment and the timing and strategic 
allocations that drive innovation forward. 

Compared to international competitors, the US 
concentrated not only most VC funds, but also 

13  Short description for each stage of deal is as follows – Seed: 
initial funding to develop an idea or prototype, often from angel 
investors (small round to get a new company off the ground) 
or seed funds (while the company is young and working to gain 
traction); Early: investment in a startup when it starts scaling its 
operations, typically Series A or B rounds; Late: growth equity 
firms and more established firms, usually before an initial 
public offering (IPO) or acquisition. The typical number of seed 
rounds that a company goes through before completing an IPO 
is three. However, there is no set number of rounds that must be 
raised. Data sourced from Crunchbase. For further information 
on deal types, see https://support.crunchbase.com/hc/en-us/
articles/115010458467-Glossary-of-Funding-Types.

https://support.crunchbase.com/hc/en-us/articles/115010458467-Glossary-of-Funding-Types
https://support.crunchbase.com/hc/en-us/articles/115010458467-Glossary-of-Funding-Types
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the largest number of deals across all stages of 
funding since 2020. China, however, accounted for 
the largest deals on average across all funding 
stages, despite cumulating fewer deals than 
other regions. Focusing on the EU, the seed stage 
has been more dynamic than in the UK and even 

China, adding up to over a thousand registered 
seed deals of EUR 0.6 million on average. These 
deals, though smaller on size, provide the initial 
capital to startups to transform innovative ideas 
into viable products and services.

Figure 10. VC deals and size by stage in main destinations over 2020-2024 (EUR million). Bars show the number 
of deals (y-axis), while dots the average size over the period (x-axis). The investment figures are weighted by the 
engagement of each firm in each technology area based on keywords frequency. VC investment seed rounds include 
angel, seed, pre-seed; early-stage rounds include series A and B; late-stage rounds include series C-J and unknown types.
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Analysing the source of investments and their 
allocations helps identify potential funding 
dependencies for innovative firms. The chord 
diagram in Figure 11 visualises the distribution 
of VC globally and its source. Since 2020, VC-
backed AI firms summed over EUR 28 billion in 
investments globally. With over EUR 14 billion, the 
US is the most significant global funding source, 
with most investment (77%) made locally and the 
remaining spread across multiple geographical 
areas. The US has a net outflow with the EU and 
UK, where US funding for foreign firms is higher 
than the amount received. China is more restrictive, 
keeping most investments in the domestic market. 
With over EUR 2.5 billion invested during the 
period, the EU occupies the third place as a private 
funding source and shows a balance between local 
and foreign investments. There is a net inflow of 
funding with the UK and the US while a net outflow 
with China, which represents 5% of all VC-sourced 
EU investment to AI firms. 

Figure 11. Domestic and cross-border VC in main 
destinations over 2020-2024 (EUR million). Each macro 
area is represented as a piece of the outer circumference 
(investor) while the arcs connect to the recipients’ 
macro areas. Arcs that start and end in the same macro 
area represent domestic investment. Arcs that connect 
different macro areas, represented the sum of the flows 
between two selected areas over 2020-2024. The 
colour of the arc is the colour of the macro area that 
is attracting more investment between the two. The 
investment figures are weighted by the engagement of 
each firm in each technology area based on keywords 
frequency. VC investment rounds include angel, seed, 
pre-seed, series A-J and unknown types. The Unknown 
label refers to investors with unidentified location.

Unknown
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Source: JRC DGTES database. VC funding to AI firms as 
identified by DGTES (Calza et al., 2022).
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AI has become one of the defining technologies 
of the 21st century, shaping competitiveness, 
productivity, and innovation capacity. Today, the 
global AI landscape is shaped by three main 
hubs, namely the US, China, and the EU, with 
other economies such as the UK, South Korea, 
and India contributing with the startup and 
innovation ecosystem. While the US dominates 
global AI in scale and venture capital investment 
to fund innovative startups, China has rapidly 
positioned itself as a global powerhouse in AI 
patent-driven innovation. The EU, on the other 
hand, holds strength in scientific output, pushing 
the knowledge frontier and the region’s research 
excellence. EU funded projects play a pivotal role 
in boosting the AI ecosystem in the EU, further 
enhancing its competitive edge.

1.3 AI in science research community

This section provides an overview of scientific 
papers on AI in science, analysing the research 
community’s characteristics, including geographical 
location, affiliation type and collaboration patterns. 
Differently from other contributions (European 
Commission, Directorate General for Research 
and Innovation et al., 2023; Fudan University and 
Shanghai Academy of AI for Science, 2025; OECD, 
2023) that analyse ‘AI in science’ by intersecting 
publications in AI with different scientific fields, 
this report takes a more targeted approach. It 
specifically examines publications that address 
topics related to the scientific process (as 
described in Section 1.4) and metascience,14 which 
studies of how science is conducted, evaluated 
and disseminated, through the investigation of 
peer review, reproducibility, research evaluation, 
research impact, open science and citation analysis 
(Nature, 2025).

The integration of AI into scientific research 
represents a broad and fast-evolving 
interdisciplinary frontier. It spans all stages of 
the mentioned scientific process, from hypothesis 
generation and experimental design to data 
collection, modelling, analysis and interpretation. 
This transformation is being driven not only 

14  https://metascience.com/mission/.

by the availability of data and computational 
infrastructure, but also by the convergence of 
domain expertise with ML and AI methods.

It is important to distinguish between 
multidisciplinary and interdisciplinary 
approaches. While multidisciplinary research 
involves drawing on multiple disciplines to examine 
a topic from various perspectives, interdisciplinary 
research goes further by integrating the knowledge 
and methods from these disciplines to create 
a new, synthesised approach. This distinction is 
crucial for understanding how AI fosters new 
collaborative paradigms in science, moving 
beyond parallel efforts toward a more integrated, 
problem-focused approach. The resulting research 
overview reflects a diversity of scientific goals, 
methodologies and disciplinary intersections, all 
contributing to the emergence of AI in science.

Practically, the analysis is conducted by adopting 
Scopus15 as the data source and using the 
methodology developed by the divinAI16 project, 
which researches and establishes a set of diversity 
indicators associated with AI developments, 
emphasising the geographical patterns of 
researcher presence in academic and non-academic 
institutions, with a focus on the differences in their 
distribution and representation. For a comprehensive 
description of the methodology, including the 
definition of the diversity indicators (e.g. affiliation 
types), as well as recent findings, please refer to the 
publication by Gomez et al. (2024). 

Table 1 illustrates the set of keywords selected 
for the analysis of the research landscape on AI 
in science presented in this section (referred to 
as ‘General’), along with the keywords used in the 
analogous analyses conducted for the deep dives 
(Section 3). In addition to the reported terms, to 
tailor the investigation to the intended objectives, 
the search queries are enriched with AI-related 
keywords (referred to as Artificial intelligence), 
added in logical conjunction. 

15  Scopus is a large, multidisciplinary database of 
peer-reviewed literature: scientific journals, books, and 
conference proceedings. Website: https://www.elsevier.com/
products/scopus/.
16  https://ai-watch.ec.europa.eu/humaint/divinai_en.

https://metascience.com/mission/
https://www.elsevier.com/products/scopus/
https://www.elsevier.com/products/scopus/
https://ai-watch.ec.europa.eu/humaint/divinai_en
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Table 1. Keywords employed for the literature analysis with the divinAI methodology by deep dive.

Topic Keyword set adopted in divinAI

General

( “discovery” OR “scientific research” OR “enhanced experimentation” 
OR “hypothesis generation” OR “scientific methodology” OR “scientific 
methodology” OR “research design” OR “scientific analysis” OR “knowledge 
discovery” OR “scientific discovery” OR “data interpretation” OR “in science” 
OR “scientific method” OR “automated scientific discovery” OR “research 
methodology” OR “scientific process” OR “experimental design” OR “scientific 
modelling” OR “scientific modelling” OR “scientific inquiry” OR “research 
innovation” OR “scientific exploration” OR “data-driven science” OR 
“experimental science” OR “scientific investigation” OR “scientific experiments” 
OR “scientific research methodologies” OR “scientific research methodology” 
OR “hypothesis testing” OR “research innovation” OR “research advancement” )

Protein structure 
prediction ( “protein folding” OR “protein design” OR “protein structure prediction” )

Material discovery

( “materials science” OR “materials engineering” OR “materials chemistry” 
OR “materials physics” OR “materials technology” OR “nanomaterials” OR 
“metallurgy” OR “polymer science” OR “ceramic engineering” OR “composite 
materials” OR “biomaterials” OR “solid state physics” OR “surface science” OR 
“materials characterization” OR “smart materials” OR “advanced materials” 
OR “functional materials” )

Site discovery and virtual 
restoration of inscriptions

( “site discovery” OR “virtual inscription restoration” OR “virtual restoration of 
inscriptions” )

Artificial Intelligence

( “AI” OR “machine learning” OR “artificial intelligence” OR “deep learning” OR 
“AI-driven” OR “reinforcement learning” OR “neural networks” OR “predictive 
analytics” OR “AI technologies” OR “natural language processing” OR 
“generative ai” OR “large language models” OR “computational intelligence” 
OR “AI methods” OR “AI methodologies” )

Source: JRC’s own elaboration.

The general analysis is conducted on 
77,306 publications indexed in Scopus with 
the described methodology, considering the 
contributions having a non-empty affiliation 
attribute. The selected retrieval period is from 
January 2015 and May 2025. Despite the deep 
dives (Section 3) being studied in a more recent 
period (i.e. from 2020 to 2025), this broader 
analysis considers a comprehensive timeframe 
to capture the full evolution of the field and the 
impact of key developments in AI. The year 2015 
is indeed considered a crucial turning point due to 
significant advances in new technologies like DL, 
notably with the introduction of breakthroughs 
neural architectures, such as ResNet (He et al., 
2016), which laid the foundation for the rapid 
adoption of AI-related techniques across different 
scientific disciplines. 

This quantitative analysis provides a high-level 
overview of the geographical distribution of 
scientific output (Figure 12), the institutional 
landscape (Figure 13 and Figure 14), and the 
collaborative networks that characterise the 
global research effort on AI in science (Figure 15). 

In terms of geographical distribution (Figure 
12), US and China almost equally lead in total 
contributions with, respectively, 15,437 (20%) and 
15,209 (19.7%) publications, followed by the EU 
with 12,167 (15.7%) contributions. Further behind, 
with fewer contributions, are India (7,420; 9.6%), 
the UK (3,789; 4.9%), Canada (2,020; 2.6%), 
Australia (1,641; 2.1%), South Korea (1,529; 2%), 
Japan (1,490; 1.9%), South Africa (1,043; 1.3%) 
and Switzerland (1,032; 1.3%).
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Figure 12. Global geographical distributions of scientific literature contributions related to ‘AI in science’ topics, 
indexed by Scopus between Jan. 2015 and May 2025.
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facilities and healthcare institutions. Non-profit 
organisations and government bodies account 
for a smaller share of output overall. Notably, in 
India and Australia, government bodies represent 
the second largest group of contributors after 
academia, which accounts for 84.8% and 79.9% 
of all publications, respectively, the two highest 
academic shares among the top ten regions.

Conducting a worldwide investigation of the 
different typologies of establishments involved 
in the scientific research on AI in science, the 
analysis of the top ten contributing countries 
and regions (Figure 13) confirms that the 
majority of scientific publications are produced 
by academic institutions. These are followed, 
in most regions, by private companies, which 
contribute slightly more than public research 

Figure 13. Distribution of ‘AI in science’ literature contributions by type of establishments and geographical area. 
Considered contributions are indexed by Scopus between Jan. 2015 and May 2025.
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A focus on the EU (Figure 14) shows the significant 
increase in the number of publications over the 
years, especially since 2020, and confirms the 
dominant position of educational institutions, 
with substantial contributions also coming 
from research facilities, private companies and 
healthcare institutions, followed by non-profits 
and government bodies. The growing availability 
of open datasets, pre-trained models as well as 
shared computational infrastructure has enabled 
broader participation across both large and smaller 
institutions, supporting a more distributed and 
interdisciplinary research landscape.

Figure 14. Amount of ‘AI in science’ literature 
contributions in the EU by type of establishments over 
the years from Jan. 2015 to May 2025. Considered 
contributions are indexed by Scopus.
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Extending the vision on the interplay between 
different type of institutions and different regions, 
examining collaboration networks is crucial to 
understand how the whole research landscape 
on AI in science is being shaped. Co-authorship 
analysis (Figure 15(a)) reveals that the most 
prominent cross-regional collaborations occur 
between the US and the EU, followed by strong 
links between the US and China, and to a lesser 
extent between the US and Canada. Within the 
Southern Hemisphere, a notable collaboration 
emerges between Australia and China, while in 
European continent, the EU and the UK maintain 
close scientific ties. In the EU, institutional 
collaborations (Figure 15(b)) among academic 
institutions, private companies, research facilities, 
and healthcare institutions are particularly 
prevalent, with academia playing a central role 
in facilitating these partnerships. Collaborations 
between educational institutions and non-profit 
organisations or government bodies are less 
common. These patterns reflect the broadening 
of AI applications across sectors, with academic 
research increasingly interconnected with 
clinical, industrial and technological innovation 
environments.

Figure 15. Collaboration patterns in ‘AI in science’ field. Amount of co-authored literature contributions by (a) 
geographical area and (b) type of establishments (only EU). Considered contributions are indexed by Scopus between 
Jan. 2015 and May 2025.

a b

AU
4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

CA

CN

EU

IN

JP

KR

SA

UK

US

AU CA CN EU IN JP KR SA

Lo
g1

0 
Sc

al
e

Lo
g1

0 
Sc

al
e

UK US

other

nonprofit

healthcare

government

funder

facility

education

company

archive

ot
he

r

no
np

ro
fit

he
al

th
ca

re

go
ve

rn
m

en
t

fu
nd

er

fa
ci

lit
y

ed
uc

at
io

n

co
m

pa
ny

ar
ch

iv
e

Source: JRC’s own elaboration based on divinAI methodology.



20

1.4 Scientific process

The scientific process, often referred to as 
the scientific method, is a structured, iterative 
framework that sets the ground for the 
development of empirical knowledge. Originating 
from the early formulation by the philosopher 
Francis Bacon, who emphasised inductive 
reasoning from observation to generalisation 
(Bacon, 1620), and later refined through Karl 
Popper’s hypothetico-deductive model centred 
on falsifiability (Popper, 1959), the scientific 
process has evolved into a widely accepted 
methodology for systematic investigation. Its core 
steps (i.e. posing a research question, conducting 
background research, formulating hypotheses, 
testing through experimentation, analysing 
results, and communicating findings) are not 
rigid rules but guiding principles that support 
reproducibility and methodological rigor (Dewey, 
1910; National Research Council, 2012).

In contemporary science, this process operates 
as a mechanism of acquiring knowledge, as 
well as a cognitive and organisational medium 
that facilitates interdisciplinary collaboration, 
peer evaluation, and cumulative advancement 
of theories (Giere, 1979; Hempel, 1966). It 
serves both epistemic and practical purposes 
by structuring how questions are asked and 
answered, allowing for the systematic refinement 
of hypotheses, and fostering the accountability of 
empirical claims through standardised procedures.

However, to fully account for how scientific 
knowledge is validated, institutionalised, 
and expanded, it is increasingly important to 
consider the role of the scientific communities 
as an integral part of the process. They are 
not merely audiences for scientific findings, 
but the arena in which credibility, consensus, 
and quality standards are negotiated (Kuhn, 
1962). Building and participating in a scientific 
community (e.g. through publication venues and 
institutional collaborations) can be seen as a 
final and essential step in the scientific process. 
It is through these communities that knowledge 
claims are assessed, theories are debated and 
refined, and interdisciplinary exchanges promote 
innovation (Knorr-Cetina, 1999; Longino, 2002; 
Wenger, 1998).

Understanding the impact of AI on each of these 
stages is crucial to assessing how scientific 
research is being transformed. From question 
formulation and hypothesis generation to 
experimentation, data analysis, dissemination 
and community engagement, AI technologies are 
reshaping the way scientists work, the nature 
of the questions they can pose, and the speed, 
scale, and precision with which they arrive at and 
validate new knowledge. Before diving into the 
details of the novel capabilities and challenges 
that AI introduces to the core of scientific 
research, this section will illustrate each step of 
the scientific process, as displayed in Figure 16.

Figure 16. The scientific process steps.

Ask a
question

Literature
review

Construct a
hypothesis

Test by
performing
experiments

Analyse your
data

Communicate
your results

Build your
scientific

community

Reject the
hypothesis

Accept the
hypothesis

Iterate the
process

Source: JRC’s own elaboration based on the scientific literature (see Section 1.4).
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1.	 Ask a question (or make an 
observation). The scientific process 
begins with observing a phenomenon or 
posing a question about something of 
interest, whether broad or specific. This 
process serves as an empirical approach to 
assessing phenomena in the universe. The 
questions typically take the form of How, 
What, When, Who, Which, Why or Where. 
In structured settings, questions should be 
measurable, ideally with numerical data, to 
ensure objective analysis.

2.	 Conduct background research (or a 
literature review). Conducting background 
research is a crucial step in the scientific 
process, as it helps determine what is 
already known about the topic and whether 
others have asked the same questions. 
This research informs the design of an 
experiment by identifying the most effective 
techniques and equipment for investigation. 
Rather than starting from scratch, 
researchers utilise existing resources to 
refine their approach and develop a solid 
theoretical foundation. Understanding the 
underlying principles behind a study is 
essential, as it enables scientists to predict 
outcomes and interpret results accurately. 
In structured settings, demonstrating this 
understanding is particularly valuable, as it 
shows an awareness of why a study yields 
specific results.

3.	 Construct a hypothesis. A hypothesis 
is an educated guess that attempts 
to explain an observation or answer a 
specific question. It serves as a testable 
explanation that may later be considered a 
fact if consistently supported by evidence. 
A well-formulated hypothesis allows for 
predictability, ensuring that the observed 
phenomenon can be tested and repeated 
under similar conditions. To strengthen 
its validity, a hypothesis should be 
accompanied by measurable predictions, 
enabling systematic evaluation through 
experimentation.

4.	 Test your hypothesis by performing an 
experiment. An experiment is designed 
to test the accuracy of a prediction and 
determine whether the hypothesis is 
supported or not. To ensure reliability, the 
experiment must be a fair test, meaning 
only one factor is changed at a time while 
all other conditions remain constant (a 
condition known as ceteris paribus). A 
well-constructed test should produce 
measurable or observable changes, 
allowing for empirical analysis. Repeating 
the experiment multiple times is essential 
to confirm that the results are consistent 
and not due to chance. Controlling for other 
variables further strengthens the validity 
of the findings, ensuring that any observed 
effects are directly linked to the factor being 
tested.

5.	 Analyse your data. Once the experiment is 
complete, the collected measurements are 
analysed to determine whether they support 
the hypothesis. The results are compared 
to the initial prediction using the predefined 
metrics to assess their alignment. A 
thorough review of all collected data is 
essential, utilising charts and graphs to 
identify patterns and trends. This analysis 
reveals whether the expected outcomes 
were achieved and provides insights into the 
findings. By carefully interpreting the data, 
a clearer understanding emerges of why 
certain outcomes occurred, offering a logical 
explanation based on empirical evidence.

6.	 Draw conclusions based on acceptance 
or rejection of the hypothesis. The 
conclusion of an experiment summarises 
whether the results support or contradict 
the original hypothesis. Key facts from 
background research can be integrated 
to provide a clearer explanation of 
the findings, including any observed 
relationships between the independent 
and dependent variables. In many cases, 
scientists discover that their predictions are 
inaccurate, leading them to communicate 
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their results and refine their hypotheses 
based on new insights. This iterative 
process is fundamental to the scientific 
process, as even supported hypotheses 
often undergo further testing in different 
conditions. If the results do not align with 
the original hypothesis, they should be 
reported transparently rather than altered 
to fit expectations. Scientists frequently 
encounter unexpected results, using 
them as a foundation for formulating 
new hypotheses and guiding future 
research. When additional experimentation 
is necessary, outlining the next steps 
ensures continuous inquiry and deeper 
understanding. Scientific research is an 
ongoing process, and every outcome, 
whether confirming or refuting a hypothesis, 
contributes valuable knowledge that 
fosters further questions and exploration. 
In structured settings, the emphasis is 
placed not on proving a hypothesis correct, 
but on the depth of learning and analytical 
reasoning demonstrated throughout the 
process.

7.	 Communicate your results. The final 
step in a scientific project involves 
communicating the results through a 
report, a display board or a presentation. 
This practice mirrors professional scientific 
communication, where researchers publish 
their findings in journals or present them 
at conferences. Proper documentation of 
the experiment’s results contributes to 
the broader body of knowledge, allowing 
other scientists to learn from the findings. 
Regardless of whether the results support 
the original hypothesis, they provide 
valuable insights and may lead to new 
questions or the formulation of a revised 
hypothesis for further testing. Scientists 
value the learning process, and the 
contributions made through transparent and 
well-documented research.

8.	 Build your scientific community. The 
scientific outcomes of individual researchers 
or teams are mediated by the scientific 
community they belong to. A scientific 
community is a network of researchers 
working on a particular discipline, topic 
or field, which gathers around a series of 
publication venues (journals, conferences) 
or academic organisations. Scientific 
communities provide the space for peer 
review, which ensures objectivity and quality 
of the scientific outcomes, the definition 
of vocabulary, methodologies, and quality 
standards and a space for collaborations 
and debate.17 Interdisciplinary and cross-
institutional activities are also beneficial for 
scientific progress.

17  https://en.wikipedia.org/wiki/Scientific_community.

https://en.wikipedia.org/wiki/Scientific_community
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2. 

ARTIFICIAL 
INTELLIGENCE IN THE 
SCIENTIFIC PROCESS
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Artificial Intelligence (AI) is reshaping the way 
scientific research is conducted, influencing both 
foundational and practical methods (Jaakkola, 
2024; Musslick et al., 2025; Pal, 2023; Rolnik, 
2024; Xie et al., 2024). Once confined to computer 
science and data processing, has become an 
active participant in scientific inquiry across 
multiple disciplines like philosophy (Q. Chen et 
al., 2024; Ye et al., 2024), social sciences (Hou 
and Huang, 2025; Xu et al., 2024), and medicine 
(Ahn, 2024; Lin, 2024), especially in the forms of 
Machine Learning (ML) (Carpenter et al., 2025; 
Gu and Krenn, 2025a) and Deep Learning (DL) 
(Onishi, 2025; Wang and Han, 2023), including 
Generative AI (GenAI) (Alvarez et al., 2024; 
Goretti et al., 2025) and Large Language Models 
(LLMs) (Bi et al., 2024; Burton et al., 2024). These 
technologies are now integrated into various 
stages of the research process, from generating 
new ideas to analysing complex data and 
disseminating findings.

AI tools are transforming how researchers engage 
with science. They can generate human-like 
text and images (Bail, 2024; Jeon et al., 2025), 
automate experimental design (Albert and 
Billinger, 2025; Bartolomeis et al., 2025), and 
assist in analysing vast and complex datasets 
(Ding et al., 2023; Tan et al., 2024). Between 2012 
and 2022, the share of scientific publications that 
engaged with AI across twenty fields quadrupled 
(Narayanan and Kapoor, 2025). Through 2023, an 
estimated 1% of academic articles incorporated 
GenAI during the writing process, with continued 
growth expected (Gray, 2024). Moreover, AI-
assisted papers accounted for 1.57% of selected 
papers in a 2024 large-scale analysis covering 
biology, chemistry, geology, materials science, 
medicine, and physics (Hao et al., 2024). 
Researchers who integrate AI into their workflows 
often experience measurable benefits: they 
publish more, receive citations at a faster rate, 
and are more likely to take on leadership roles 
(Hao et al., 2024). These patterns suggest that 
structural incentives within research ecosystems 
are accelerating the adoption of AI technologies. 
The integration of AI offers significant potential. 
It enables scientists to process large volumes of 

information quickly, uncover patterns that might 
otherwise go unnoticed, and automate repetitive 
tasks (Goretti et al., 2025). These capabilities can 
enhance efficiency and support more ambitious or 
creative research (Schmidgall et al., 2025).

However, the integration of AI into science 
presents significant challenges and risks (Beel et 
al., 2025; Eger et al., 2025; Hanson et al., 2023; 
Lahav et al., 2022; Lin and Zhang, 2025; Musslick 
et al., 2025; Narayanan and Kapoor, 2025; Rolnik, 
2024; Schetinger et al., 2023; Tang et al., 2025; 
Wasim and Zaheer, 2023). There are concerns 
about issues like hallucination (Drosos et al., 2024; 
Eger et al., 2025; Galli et al., 2024; L. Huang et 
al., 2025; Messeri and Crockett, 2024; Schryen et 
al., 2025), bias (Abeliuk et al., 2025; Algaba et al., 
2025; Goretti et al., 2025; Gottweis et al., 2025; 
Hosseini and Horbach, 2023; Jeon et al., 2025; 
Kabir et al., 2025; Messeri and Crockett, 2024; 
Monge Roffarello et al., 2025; Seghier, 2025; 
Tyser et al., 2024), lack of transparency in how 
results are produced (Binz et al., 2025; Bolaños et 
al., 2024; Eger et al., 2025; Gottweis et al., 2025; 
Saeidnia et al., 2024), and potential to exacerbate 
social inequality (Bail, 2024; Binz et al., 2025; 
Goretti et al., 2025). Such limitations threaten 
the reliability and accountability of AI-assisted 
science, including a broader risk that widespread 
adoption may lead to a reduction in diversity 
in research methods or viewpoints, resulting 
in a less heterogeneous and understandable 
scientific landscape (Messeri and Crockett, 2024). 
Addressing these risks requires careful attention 
to governance, ethics, and regulatory alignment. 
The development and use of AI in science should 
be guided by principles that promote transparency, 
fairness, and inclusivity. Scientific communities 
play a central role in determining how these tools 
are deployed and in managing their benefits and 
limitations.

This section examines how AI is affecting each 
stage of the scientific process (depicted in Figure 
16), from the initial observation and formulation 
of research questions to hypothesis development, 
experimental design, data analysis and 
communication of results. The analysis draws on 
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peer-reviewed literature and high-impact preprints 
from January 2020 to July 2025 (with just some 
few exceptions from previous years), to offer a 
comprehensive and evidence-based perspective. 
The section also focuses on methodological 
transformations and aims to inform researchers, 
policymakers and interdisciplinary stakeholders 
who are shaping the future of scientific research. 
For every scientific process step described 
previously, patterns and limitations are identified 
by analysing AI’s contributions at each stage .

2.1 Ask a question (or make an 
observation)
AI can support scientists in the early stages of 
research by helping them identify gaps, discover 
new research topics, as well as formulate and 
refine research questions or objectives (Broska 
and McFarland, 2025; Feng, 2024; Nicholas et al., 
2024). Language models can assist researchers 
in generating ideas by providing relevant inputs 
interactively through user-friendly interfaces (Lo 
et al., 2023; Nigam et al., 2024). Additionally, in 
this step, AI offers opportunities for defining and 
framing problems (Pretolesi et al., 2025).

2 .1.2 RECURRING AND EMERGING 
TRENDS

	– Idea generation support – AI is evolving 
from a passive ‘data-crunching tool’ to 
an active ‘idea generator’ AI tools act as 
a co-scientist during the early stages of 
research design and ideation (Feng, 2024; 
Gottweis et al., 2025). They can go through 
large amounts of data to find areas where 
knowledge is limited and suggest new 
topics (Kim et al., 2024; Nicholas et al., 
2024)yet incorporating patient perspectives 
into health research has been inconsistent. 
We propose an automated framework 
leveraging innovative natural language 
processing (NLP. The AI co-scientist system 
is designed to generate novel research 
theories and proposals based on data-
driven objectives and guidance (Gottweis et 
al., 2025). AI can assist in initiating parts of 

the search strategy for systematic reviews, 
starting with defining the scope based 
on the rationale, objectives or questions 
addressed (Majumder et al., 2024; Wätzold 
et al., 2024).

	– Knowledge gap identification – AI 
is helping to uncover ‘what we don’t 
know’ by analysing extensive bodies of 
literature. Modern tools based on LLMs can 
synthesise diverse pieces of information, 
making it manageable to identify gaps 
or inconsistencies in existing knowledge 
(Oksanen, 2024; Zhang et al., 2024). 
By creating knowledge graphs or using 
embedding models, AI systems can conduct 
a Literature-Based Discovery (LBD), a 
concept asserting that new knowledge 
can be uncovered by connecting logically-
related fragments of existing information 
in public literature that have not yet been 
explicitly linked or interpreted (Luo et al., 
2025). Its central idea is to formulate 
novel hypotheses by bridging previously 
unrelated concepts found across various 
publications, as well as hidden relationships 
rooted in real-world concerns (Z. Chen et 
al., 2024; Y. Hu et al., 2025). Although this 
technique was originally developed decades 
ago (Swanson, 1986), recent advances 
(such as leveraging DL- or LLM-based 
analyses on scientific texts) significantly 
enhance the ability to propose plausible 
research directions that bridge gaps in 
the literature (Duede, 2023; Luo et al., 
2025). For example, these approaches have 
been applied to propose drug repurposing 
candidates and to uncover hidden relations 
in biomedical text (Gao et al., 2024; Liu et 
al., 2025).

	– AI as a creative partner – Researchers 
have begun folding AI into the creative 
aspects of science. Instead of using AI only 
for data analysis, scientists are exploring 
AI to brainstorm ideas and suggest what 
questions to pursue (Gu et al., 2025; Pu 
et al., 2024; Si et al., 2024) providing 
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valuable frameworks for understanding and 
implementing creative processes. However, 
recent work using Large Language Models 
(LLMs. For example, theoretical physicist 
Mario Krenn developed an AI system 
(named Melvin) that autonomously designed 
a new quantum optics experiment (Krenn 
et al., 2016), a setup his team had not 
conceived on their own. The AI’s proposal, 
initially emailed to Nobel laureate Anton 
Zeilinger, was novel and intriguing: after 
several years, the AI-designed experiment 
worked in practice (Krenn et al., 2022). 
This success demonstrated that AI could 
propose viable experiments or hypotheses, 
effectively asking new scientific questions. 
Moreover, GenAI models may explore and 
generate ideas, integrating multidisciplinary 
perspectives, to solve research problems 
creatively (Schryen et al., 2025). In this 
scenario, AI can even generate research 
topics that experts (e.g. oncologists) rate as 
novel and significant, reflecting users (e.g. 
patients) concerns, indicating its capacity to 
generate ideas in specific interdisciplinary 
domains (Kim et al., 2024).

2 .1.2 CHALLENGES AND 
L IMITATIONS

AI’s strength is often seen in solving pre-specified 
problems (‘easy problem’), while coming up 
with the problem itself or requiring continual 
conceptual revision (‘hard problem’) is still 
largely beyond current capacities (Battleday 
and Gershman, 2024). There are concerns that 
AI might shift collective attention away from 
new and original questions that lack the data 
required for AI to demonstrate a benefit (Hao 
et al., 2024). Automating tasks like identifying a 
research question can be challenging as they rely 
on diverse and subjective inputs that may not 
be structured for machine processing (Musslick 
et al., 2025). The increasing capability of AI to 
formulate research questions necessitates a re-
evaluation of current scientific paradigms, moving 
towards ‘deep research’ agents and potentially 
AI co-scientists that can operate with significant 

autonomy (Gottweis et al., 2025). This evolution, 
however, raises important questions about 
accountability and the very definition of scientific 
creativity, prompting a broader discussion on 
the ethical implications and the evolving role of 
human scientists, who may increasingly focus on 
high-level strategic direction, critical evaluation, 
and the ethical oversight of AI-generated inquiries 
(Liang et al., 2024).

2.2 Conduct background research (or 
a literature review)
The rapid growth of scientific literature presents 
a significant challenge. AI is dramatically 
improving the efficiency and scope of background 
research (Bolaños et al., 2024; Mostafapour et 
al., 2024; Schryen et al., 2025; Jiyao Wang et 
al., 2024). It helps researchers find and digest 
information faster (through intelligent search 
and summarisation), ensures that crucial prior 
findings are not overlooked (via automated 
extraction of data and evidence), and even 
highlights novel connections in literature that 
can inform new studies (Bednarczyk et al., 
2025; Peters and Chin-Yee, 2025; Saeidnia et al., 
2024). AI-powered tools are transforming the 
way researchers handle these tasks by utilising 
Natural Language Processing (NLP), ML, LLMs, 
citation and knowledge graphs to automate 
the retrieval, extraction, and summarisation of 
scientific information (Glickman and Zhang, 2024; 
Rajwal et al., 2025; Zeng et al., 2025). They assist 
researchers in navigating previous work and offer 
considerable potential for automating literature 
reviews with personalised models (Agarwal et 
al., 2025; Z. Liu et al., 2024; McGinness et al., 
2024; Miah et al., 2024). Agents based on LLMs 
have shown the ability to produce readable and 
detailed literature reviews (Z. Liu et al., 2024; 
Sami et al., 2024).

2 .2 .1 RECURRING AND EMERGING 
TRENDS

	– Enhanced search and discovery – AI-
based tools offer more than just basic 
keyword matching; they provide context-
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aware and semantic search capabilities. 
These tools can generate answers based 
on search results and offer comparative 
insights (Eger et al., 2025). Examples 
include ChatGPT and Gemini ‘Deep 
Research’, Elicit, ORKG ASK, NotebookLM, 
and various Recommender Systems (RSs) 
(Y. Huang et al., 2025; Oelen et al., 2024; 
Whitfield and Hofmann, 2023). This is 
particularly valuable for interdisciplinary 
work, as AI models, such as LLMs, can 
efficiently summarise and highlight key 
findings from vast scientific literature and 
facilitate the exploration of interdisciplinary 
research, bridging gaps between different 
fields (Barman et al., 2025; Eger et al., 
2025) . Additionally, graph-based systems 
help map the relationships between 
concepts and publications, allowing for 
the identification of both foundational and 
emerging works (Gu and Krenn, 2025b; Xu 
et al., 2025).

	– Automated summarisation and 
extraction – AI tools can autonomously 
summarise abstracts of selected papers, 
ensuring pertinence to research questions 
(Sami et al., 2024). They can process 
diverse unstructured and structured data to 
uncover hidden patterns and insights within 
scientific literature (Schryen et al., 2025). 
Named-entity recognition and classifiers 
can be used to extract specific entities 
or concepts from articles (Bolaños et al., 
2024). These systems help scientists stay 
up to date with new publications, identify 
relevant findings, and quickly gain an 
overview of a field.

	– Information extraction and 
organisation – Beyond summaries, 
AI is being used to extract structured 
knowledge from papers automatically 
(Bernasconi et al., 2022; Dagdelen et al., 
2024). An example is the Scite Assistant’s 
AI-powered tool for reading research 
tables and data (Lund and Shamsi, 2023). 
Instead of manually examining articles 

for specific data points or experimental 
results, researchers can leverage AI to 
pull out and organise those details (Hsu 
et al., 2024). This is particularly valuable 
in fields like pharmacology or clinical 
research, where missing a critical data point 
could significantly alter conclusions (Xu 
et al., 2025). By structuring methods and 
outcomes from hundreds of papers, AI can 
enable more efficient meta-analyses and 
evidence aggregation.

2 .2 .2 CHALLENGES AND 
L IMITATIONS

Despite advancements, challenges persist, 
including data quality and coverage gaps, 
bias in AI models influencing the visibility of 
research, and scalability issues (Eger et al., 2025). 
GenAI’s effectiveness depends on the specific 
knowledge development activity in the review; 
while helpful for identifying and synthesising 
literature, it may fall short in critical analysis or 
aggregating complex evidence (Schryen et al., 
2025). Some studies have shown inconsistencies 
in performance for literature searches across 
different AI tools (Lund and Shamsi, 2023; 
Schryen et al., 2025). Relying on AI tools without 
reading the actual papers can lead to the 
invention of references or spurious correlations 
(Buriak et al., 2023), a growing concern for 
funding agencies and review committees 
who have reported encountering non-existent 
publications in submitted bibliographies . 
Excessive reliance on LLMs for literature synthesis 
can hinder the development and refinement of 
conceptual frameworks, which are essential for 
scientific education.

2.3 Construct a hypothesis

AI can play a crucial role in generating 
hypotheses, a fundamental step in the scientific 
discovery process (Abdel-Rehim et al., 2025; 
Barman et al., 2025; Batista and Ross, 2024; 
Eger et al., 2025; Liu et al., 2025; Misra and Kim, 
2024). It can propose credible connections based 
on existing literature, predict novel links using ML 
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models, suggest formal theoretical conjectures, 
and even derive specific potential formulas 
(Battleday and Gershman, 2024; Beel et al., 2025; 
Luo et al., 2025). LLMs can generate ideas that 
are plausibly novel and feasible, comparable to 
those produced by human researchers (L. Li et 
al., 2024). Agent-based systems, such as the AI 
co-scientist, are specifically designed to automate 
the entire research pipeline, including hypothesis 
formulation and helping uncover new and original 
knowledge, as well as to formulate demonstrably 
novel research hypotheses and proposals 
(Gottweis et al., 2025).

2 .3 .1 RECURRING AND EMERGING 
TRENDS

	– Literature-based hypothesis 
generation – AI systems systems 
can generate research hypotheses by 
synthesising extensive literature and 
identifying latent relationships (Gottweis 
et al., 2025; Saeidnia et al., 2024). Multi-
agent systems leveraging knowledge 
graphs and LLMs, like SciAgents, can 
autonomously generate and refine 
hypotheses, even revealing hidden 
interdisciplinary relationships (Ghafarollahi 
and Buehler, 2024). AI can be used to 
design experimental stimuli or interview 
questions, which are linked to hypothesis 
formulation (Feng, 2024). In practice, the 
same AI tools that identify research gaps 
can also propose specific hypotheses. By 
analysing patterns in scientific papers, AI 
might suggest, for example, that a certain 
protein could be a key regulator in a disease 
(connecting two previously unrelated study 
findings) (Cheerkoot-Jalim and Khedo, 2021; 
Henry and McInnes, 2017).

	– ML-driven link prediction – In many 
fields, hypothesis generation can be framed 
as a link prediction or pattern completion 
problem (Krenn et al., 2023). These 
predictions are essentially hypotheses 
about cause-effect or interactions. A 
concrete example is in drug discovery: 

ML models trained on known drug–target 
interactions have proposed new candidate 
drug molecules for specific targets (Dara et 
al., 2022; Sadybekov and Katritch, 2023). 
Notably, in early 2020, a DL approach 
identified a novel antibiotic drug (later 
named ‘halicin’) by predicting antibacterial 
activity for molecules in a large chemical 
library (Stokes et al., 2020). The model 
generated the hypothesis that halicin 
would be effective against certain resistant 
bacteria, a hypothesis later confirmed 
experimentally, showcasing AI’s ability to 
hypothesise useful new therapeutics.

	– AI in theoretical discovery – AI has even 
started contributing hypotheses in abstract 
domains like mathematics (Jejjala et al., 
2019; Lample and Charton, 2019; Raayoni 
et al., 2021). In late 2021, DeepMind’s 
team combined ML with human insight to 
conjecture new mathematical theorems 
(Davies et al., 2021). Their AI system 
analysed massive datasets of mathematical 
objects to spot patterns and suggested 
conjectures in areas such as knot theory 
and representation theory. A relevant 
finding of the study revealed that AI can 
aid in formulating hypotheses (conjectures) 
even in fields with no experimental data, 
by guiding human intuition toward fruitful 
ideas.

	– Symbolic AI and hypothesis formation 
– AI techniques (like automated reasoning 
and symbolic regression) are being 
used to formulate scientific laws or 
hypotheses (Angelis et al., 2023; Reddy 
and Shojaee, 2025). Instead of a human 
guessing a functional form, symbolic 
regression algorithms search the space of 
mathematical expressions to fit data and 
produce human-readable hypotheses (i.e. 
equations) (Makke and Chawla, 2024). For 
example, researchers have developed AI 
methods that rediscovered Kepler’s third 
law of planetary motion and Einstein’s 
time-dilation formula by combining logical 
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reasoning with a small amount of data 
(Cornelio et al., 2023). The past few years 
have seen improvements in ensuring such 
AI-generated hypotheses obey known 
physics and are consistent with known 
principles (Shin et al., 2024).

2 .3 .2 CHALLENGES AND 
L IMITATIONS

AI systems trained on existing literature may 
favour popular paths, potentially reinforcing 
established research paradigms and neglecting 
underrepresented directions (Eger et al., 2025; 
Tang et al., 2025). AI-generated hypotheses 
may lack transparency, making it difficult for 
researchers to verify their scientific soundness or 
underlying assumptions (Eger et al., 2025). There 
is a critical concern that a considerable part of 
AI-generated research documents are plagiarised, 
bypassing detectors and not acknowledging 
original sources (Gupta and Pruthi, 2025). 
Reliance on AI might lead to a homogenisation of 
ideas across populations (Gottweis et al., 2025). 
AI seems more inclined to stimulate answers to 
existing issues rather than generate new ones, 
potentially slowing the expansion of knowledge by 
inducing collective hill-climbing (Hao et al., 2024).

2.4 Test your hypothesis by 
performing an experiment
AI is revolutionising the experimentation process 
by enhancing the design and execution of 
research activities (Albert and Billinger, 2025; 
Bartolomeis et al., 2025; Q. Huang et al., 2024; 
Z. Liu et al., 2024). By intelligently selecting and 
automating experiments, AI enables researchers 
to focus on the most promising avenues of 
investigation. Its capabilities allow for the 
operation of experiments with minimal human 
intervention, providing real-time interpretation 
of results (Stevenson et al., 2024; Yacoub et al., 
2022). This efficiency facilitates quicker testing 
of hypotheses and allows for the exploration of 
larger experimental domains than ever before. 
Moreover, robotics combined with AI-driven 
automation has simplified laboratory procedures, 

making it easier for scientists to conduct 
complex studies (Rolnik, 2024). AI algorithms 
significantly contribute to the advancement of 
science by simulating experiments, predicting 
outcomes, and optimising various conditions, 
thereby accelerating scientific breakthroughs 
(Feng, 2024). These tools also provide valuable 
assistance in programming, enhancing the 
implementation of statistical analyses (Goretti et 
al., 2025). Additionally, specialised systems like 
the ‘agent laboratory’ are designed to function 
within automated research pipelines, further 
simplifying the scientific process (Battleday and 
Gershman, 2024; Beel et al., 2025; Schmidgall et 
al., 2025; Tom et al., 2024).

2 .4 .1 RECURRING AND EMERGING 
TRENDS

	– Experiment design and optimisation 
– AI techniques (including Bayesian 
optimisation and reinforcement learning) 
are used to design experiments that yield 
maximal information (Dworschak et al., 
2022; Greenhill et al., 2020; Treloar et al., 
2022). Instead of exhaustive or random 
trial-and-error, scientists can employ ML 
to prioritise which experiments to run, 
essentially testing the most promising 
parts of a hypothesis first (Dang et al., 
2024; Mece et al., 2020). In materials 
science and chemistry, this approach has 
given rise to ‘self-driving labs’ (Tom et 
al., 2024). For example, an autonomous 
chemical lab can be set up as a closed-
loop system: an AI model proposes a set 
of experimental conditions, a robotics 
system runs the experiment and measures 
results, and the AI learns from the outcome 
to propose the next experiment. Recent 
reports describe autonomous labs that can 
execute 50–100 times more experiments 
per day than a human18 (Biron, 2023). By 
operating 24/7 and adjusting protocols on 
the fly, these AI-driven labs significantly 
accelerate hypothesis testing optimisation 

18  https://newscenter.lbl.gov/2023/04/17/meet-the-
autonomous-lab-of-the-future/.

https://newscenter.lbl.gov/2023/04/17/meet-the-autonomous-lab-of-the-future/
https://newscenter.lbl.gov/2023/04/17/meet-the-autonomous-lab-of-the-future/
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and free human scientists to focus on 
designing high-level hypotheses (Delgado-
Licona and Abolhasani, 2023; Desai et al., 
2025). Moreover, AI frameworks support 
automating tasks like hyperparameter 
tuning (Czako et al., 2021; Shawki et al., 
2021), as well as generating executable 
code for experiments (Wills et al., 2024; 
Fengxiang Zhao et al., 2024; Zhuang and 
Lin, 2024).

	– Simulation and data generation – AI 
is fundamentally changing the nature 
of scientific experiments by enabling 
large-scale simulations. It can be used to 
simulate human behaviour for research 
purposes, such as in survey research, online 
experiments, and agent-based models 
(Albert and Billinger, 2025; Bail, 2024; 
Gürcan, 2024; Yiren Liu et al., 2025; Rosala 
and Moran, 2024). AI can also generate 
simulated or synthetic data, although only a 
few biomedical researchers reported using 
it for this purpose (Afonja et al., 2025; Goyal 
and Mahmoud, 2024; Ruediger et al., 2024). 
The ability to simulate known results with 
AI may indicate functional abilities in data 
generation and theory building (Afonja et al., 
2025; Christou, 2023; Lehr et al., 2024; R. 
Li et al., 2024). This is evident in fields like 
weather forecasting (Conti, 2024), where AI 
models can process billions of data points 
more quickly than traditional physics-based 
models, and in structural biology, where 
models like AlphaFold accurately predict 
protein structures (Jumper et al., 2021). AI’s 
ability to analyse patterns from data also 
allows it to be used to solve a wide range of 
mathematical problems, from basic algebra 
to advanced calculus (Davies et al., 2021). 

	– Controlled instruments – In large-
scale scientific experiments, such as 
physics detectors, telescopes, and particle 
accelerators, AI plays a crucial role in 
managing complex instruments and 
identifying noteworthy events (Jiao et al., 
2024; Zubatiuk and Isayev, 2021). For 

instance, particle physics experiments 
employ ML models in real-time to decide 
which collision events to record, a form of 
hypothesis testing that involves retaining 
data that might confirm a theory (Jiao et al., 
2024; Krenn et al., 2022; Lai et al., 2022). 
In astronomy, AI pipelines analyse telescope 
data nightly to identify phenomena like 
supernovae or new asteroids for follow-
up, effectively testing hypotheses about 
transient events by catching them as they 
happen (Fluke and Jacobs, 2020; K. Huang 
et al., 2024; Kodi Ramanah et al., 2022). 
These applications show how AI increases 
the responsiveness of experimental tests.

2 .4 .2 CHALLENGES AND 
L IMITATIONS

The speed and volume at which AI can design 
and execute experiments can lead to insufficient 
ethical oversight and inadequate safety controls 
(Eger et al., 2025; Jeon et al., 2025; Seghier, 
2025). There are concerns about AI models 
fabricating data and studies, which can be 
difficult to ascertain without significant time for 
review (Kabir et al., 2025; Saeidnia et al., 2024). 
AI models can also propagate coding errors and 
biases present in their training data (Becker et 
al., 2023; Kücking et al., 2024; Straw, 2020). 
Handling AI-generated hallucinations, such as in 
citation creation for experimental methods, can 
result in inaccurate or non-existent references (L. 
Huang et al., 2025; Monge Roffarello et al., 2025). 
Regarding the generation of code for experiments, 
translating methodology into executable actions 
remains a challenge for AI agents without 
dedicated interfaces or tools (Becker et al., 2023; 
Huang et al., 2024).

2.5 Analysing data from 
experimental results
AI tools are increasingly being utilised to assist in 
data analysis and interpretation (Bi et al., 2024; 
Drosos et al., 2024; Eger et al., 2025; X. Hu et al., 
2024; Liu et al., 2023; Rolnik, 2024; Wachinger 
et al., 2024). ML algorithms excel at identifying 
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patterns, correlations, and trends within large 
datasets (Pal, 2023; Wasim and Zaheer, 2023). 
This area of application is often referred to as ‘AI 
as Quant’ (Weiskopf, 2024). AI can handle complex 
datasets, which may enhance or even surpass 
human cognitive abilities in examination (Musslick 
et al., 2025). Additionally, AI tools can aid in both 
data cleaning and analysis (Binz et al., 2025; 
Monge Roffarello et al., 2025; Zhu et al., 2025).

2 .5.1 RECURRING AND EMERGING 
TRENDS

	– Automated data processing – Modern 
scientific experiments and observations 
often produce data on scales that 
overwhelm traditional analysis (Pagliaro 
and Sangiorgi, 2023). AI systems can 
automate data collection and cleaning, 
ensuring higher accuracy and consistency 
(Rolnik, 2024; Zhu et al., 2025). They 
enable efficient data processing, pattern 
recognition, and knowledge extraction 
from various sources (Lipkova et al., 2022; 
Fei Zhao et al., 2024). AI can analyse 
large volumes of text, audio, video or any 
data to uncover patterns and trends in 
cultural, historical, and social phenomena 
(Rolnik, 2024; The Royal Society, 2024). In 
quantitative analysis, AI methods like rule-
based learning, supervised learning, and 
LLMs can assist with tasks like inductive 
coding of qualitative data (Fengxiang Zhao 
et al., 2024).

	– Pattern recognition – AI has stepped 
in as a robust pattern recogniser (Jalaian 
and Bastian, 2023; Serey et al., 2023). In 
high-energy physics, for example, billions 
of collision events are produced at the 
LHC, far too many for humans to scrutinise 
individually. Deep Neural Networks (DNNs) 
are trained to recognise the fingerprints of 
interesting particles within this deluge. An 
Argonne Lab study used a Neural Network 
(NN) autoencoder to sift through LHC data 
and detect subtle anomalies that could 
indicate new physics beyond the Standard 

Model (ATLAS Collaboration, 2024). 
Similarly, in astronomy, DL has been used 
to classify millions of galaxies and identify 
new exoplanets. NASA’s ExoMiner NN 
recently validated 301 new exoplanets from 
Kepler telescope data in one large batch, by 
learning to distinguish true planetary signals 
from false positives (Valizadegan et al., 
2022). These successes highlight AI’s ability 
to analyse massive datasets efficiently, 
uncovering patterns (e.g. new planets, 
potential new particles, etc.) that would 
have taken prohibitive human effort to find.

	– Advanced data mining and multivariate 
analysis – AI enables scientists to analyse 
data with many variables in ways traditional 
statistics cannot (Kumar et al., 2023). For 
instance, in genomics and systems biology, 
ML models can integrate thousands of 
features (such as genes, mutations, and 
expression levels) to identify clusters or 
predictive patterns related to disease (De La 
Vega et al., 2021; DeGroat et al., 2023). In 
climate science, DL models digest petabytes 
of simulation output and observational 
data to detect trends or extreme events 
(Jiang et al., 2022; Salcedo-Sanz et al., 
2024). What is crucial is that AI can model 
highly complex, non-linear relationships 
in data. This leads to novel discoveries: 
ML analysis of seismic data has identified 
previously unknown micro-earthquake 
patterns (Mousavi and Beroza, 2023; Yang 
et al., 2021), and DL on network traffic has 
revealed telltale signs of cosmic events, 
such as identifying gravitational lensing 
patterns in telescope images (Kim et al., 
2021). AI-driven data analysis typically 
demonstrates increased sensitivity and 
uncovers novel insights, as algorithms 
can detect subtle signals that are often 
overlooked by traditional analyses.

	– Automated interpretation and 
understanding – AI-driven methods 
increasingly support the interpretation 
of scientific data by automating complex 
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analytical tasks (Gil et al., 2021; Sarker, 
2022). In domains such as medical imaging 
and microscopy, DL models not only 
detect relevant features (such as tumours 
in scans (Gharaibeh et al., 2022; Kao 
and Yang, 2022)) but also quantify and 
characterise them, enabling more efficient 
and precise assessments (X. Li et al., 2024). 
Similarly, in particle physics, ML algorithms 
can infer physical properties, such as 
charge or momentum, from raw detector 
outputs, often outperforming traditional 
reconstruction methods (Karagiorgi et al., 
2022). In environmental sciences, AI-based 
surrogate models emulate computationally 
expensive simulations, such as climate 
or fluid dynamics models, allowing for 
real-time analysis of dynamic systems 
(Emmerich et al., 2024; Jones et al., 2023). 
Moreover, AI supports the integration of 
quantitative and qualitative analyses, for 
instance by semantically enriching social 
media or experimental data and aligning 
it with external sources such as literature 
or code repositories (Bryda and Sadowski, 
2024; Rietz and Maedche, 2021).

2 .5.2 CHALLENGES AND 
L IMITATIONS

AI tools are likely to make mistakes or hallucinate 
in analysis (L. Huang et al., 2025). The use 
of AI in data analysis, especially for complex 
or nuanced data, carries risks of illusions of 
understanding if contextual sensitivity and 
multidisciplinary perspectives, often preserved 
by qualitative approaches, are stripped out 
(Messeri and Crockett, 2024; Weiskopf, 2024). 
In this scenario, transparency and explainability 
of AI models are crucial, as complex models can 
obscure the process by which predictions are 
made (Chowdhury et al., 2023; Mengaldo, 2025; 
Walmsley, 2021). Over-reliance on AI analysis 
could diminish researchers’ critical thinking 
skills (Schemmer et al., 2023; Zhai et al., 2024). 
Evaluating the reliability and trustworthiness of 
AI results is crucial, necessitating validation and 
a critical review by human experts (Tsamados et 

al., 2025). There are concerns about the potential 
for over-concentration of AI research leading to 
redundant innovation rather than novel insights 
(Doshi and Hauser, 2024; Hao et al., 2024).

2.6 Draw conclusions based on 
acceptance or rejection of the 
hypothesis

Once data are analysed, scientists must draw 
conclusions, as determining whether a hypothesis 
is supported, and formulate theoretical 
explanations. AI algorithms can assist researchers 
in deriving meaningful conclusions based on 
the patterns and trends identified in the data 
analysis procedures (Pal, 2023; Wasim and Zaheer, 
2023). Frameworks and systems like AIGS aim 
to autonomously complete the entire research 
process or contribute to theory building (Lehr et 
al., 2024; Z. Liu et al., 2024). AI helps connect the 
dots between data and theory. It can elevate raw 
analysis to formal theory, assist in validating that 
conclusions are causally sound and consistent 
with known science (Burstein and LaFlair, 2024), 
and even participate in the reasoning process 
(Ghafarollahi and Buehler, 2024; X. Liu et al., 2024). 
The result is that scientific findings can be reached 
more rigorously and, at times, more creatively, with 
AI offering a second pair of eyes to catch errors 
or propose explanations that humans might miss 
(Krenn et al., 2022; Wang et al., 2023).

2 .6 .1 RECURRING AND EMERGING 
TRENDS

	– Falsification and verification – AI 
systems can be designed with explicit 
falsification components to identify and 
verify potential scientific discoveries based 
on experimental results (K. Huang et al., 
2025; Z. Liu et al., 2024). The process of 
falsification is considered central to AI-
generated science, built on experimentation 
and aimed at fostering creativity.

	– Causal inference and hypothesis 
evaluation – Drawing correct conclusions 
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often hinges on distinguishing correlation 
from causation. AI is aiding scientists in 
performing causal inference on complex 
datasets (Chernozhukov et al., 2024; 
Wang et al., 2022). Advanced methods can 
suggest causal relationships that explain 
the data. For example, AI algorithms have 
been applied to epidemiological data to 
infer causal links between risk factors 
and outcomes, guiding conclusions about 
disease etiology (Jacquot et al., 2023). In 
fields like economics or social sciences, 
where randomised trials are impractical, 
ML-based causal models help researchers 
conclude which factors truly have effects 
(Schölkopf, 2022). Additionally, AI can 
run counterfactual simulations: using 
generative models to simulate what if 
scenarios that test the robustness of 
conclusions under different assumptions 
(Kirfel et al., 2025).

	– Ensuring consistency and validating 
conclusions – AI is also used as a 
safeguard to check that new findings make 
sense in the context of existing knowledge 
(Cheong, 2024). Researchers have proposed 
formal verification methods where an 
AI system evaluates whether a learned 
hypothesis (from an ML model) violates 
known physical laws or constraints (Reddy 
and Shojaee, 2025). This alignment with 
scientific principles is essential as AI takes a 
larger role in discovery, and tools are being 
developed to integrate domain knowledge 
as a constraint on AI-driven conclusions 
(Gabriel, 2020; Reddy and Shojaee, 2025). 
Moreover, by analysing statistical patterns 
and metadata from published studies, AI 
can estimate a study’s probability of being 
true upon replication and foresee unreliable 
results (Hong et al., 2023; Ryan, 2020).

	– Human-AI collaborative reasoning – 
Drawing conclusions often benefits from 
explanation and reasoning, where AI 
can assist via LLMs or knowledge-based 
systems (Forer and Hope, 2024; Ifargan 

et al., 2025). LLMs, fine-tuned on scientific 
knowledge, can assist researchers by 
logically narrating the implications of the 
results or by suggesting additional tests to 
verify a conclusion (Cohen and Peled, 2025; 
Singhi et al., 2025). When grounded in data 
and adequately verified, these models can 
help researchers articulate conclusions 
more clearly or consider alternative 
interpretations.

2 .6 .2 CHALLENGES AND 
L IMITATIONS

Despite its transformative potential, AI-assisted 
research presents notable epistemological and 
methodological limitations. In domains heavily 
reliant on quantitative or large-scale data, AI can 
foster a form of data centrism that privileges 
inductive pattern recognition over theoretical 
reasoning, weakening the dialectical interplay 
between empirical evidence and conceptual 
frameworks (Kumar et al., 2024; Patel, 2024). 
Moreover, current AI systems often lack the 
capacity for deep interpretation or contextual 
judgment, making them adept at reproducing 
established knowledge but poorly suited for 
distinguishing between spurious correlations 
and groundbreaking insights (Buriak et al., 2023; 
Wang et al., 2023). Paradoxically, the precision 
afforded by AI tools can obscure rather than 
clarify scientific understanding, raising concerns 
about the depth and originality of conclusions 
derived from such systems. Messeri and Crockett 
(2024) warn that the proliferation of AI tools in 
science risks introducing a phase of scientific 
enquiry in which we produce more but understand 
less, potentially leading to scientific monocultures 
where certain methods and viewpoints dominate, 
making science less innovative and more prone to 
errors. For conclusions to be truly interdisciplinary 
and robust, human scientists must retain critical 
responsibilities for reviewing, critiquing, validating 
theories, identifying gaps, and extending 
knowledge, acting as directors and overseers of 
AI-generated insights.
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2.7 Communicate results

AI-based systems are influencing how scientists 
communicate. When used responsibly, these 
tools can greatly aid researchers in scientific 
writing, editing, and publishing (Eger et al., 2025; 
Goretti et al., 2025; Jaakkola, 2024; Melliti, 2024; 
Ruediger et al., 2024; Zhuang et al., 2025). They 
are instrumental in streamlining tasks such as 
manuscript formatting, reference expansion, 
checking grammar, and enhancing clarity (Feng, 
2024; Lin, 2025; H. Wu et al., 2023). AI can 
assist with language tutoring for non-native 
English speakers (Pang et al., 2025), as well as in 
drafting papers, generating specific sections like 
titles, abstracts, and related work, and assisting 
with citations (Salvagno et al., 2023; Wallwork, 
2024). LLM-based systems are being explored 
for automating the whole paper-writing process 
(Liang et al., 2024).

2 .7.1 RECURRING AND EMERGING 
TRENDS

	– AI-assisted scientific writing – AI 
tools , particularly LLMs, are increasingly 
employed as writing assistants throughout 
the scientific communication process. By 
supporting researchers in overcoming 
initial writing barriers, refining grammar, 
and improving argumentation structure, 
these systems help streamline manuscript 
preparation and enhance textual clarity 
(Liang et al., 2024; Lin, 2025; Pang et al., 
2025; Salvagno et al., 2023; Wallwork, 
2024; H. Wu et al., 2023). Applications 
range from summarising related work to 
translating technical language into more 
accessible prose, thereby accelerating the 
writing process. Some platforms extend 
these capabilities toward fully automated 
drafting and documentation, including code 
annotation (Binz et al., 2025; Dou et al., 
2024). Scientists report that these tools 
help in composing readable introductions, 
summarising related work, or converting 
technical jargon into clearer language 
(Yuhan Liu et al., 2025). The overall result 

is often quicker writing and enhanced 
clarity, although authors should thoroughly 
fact-check AI-generated text for accuracy 
(Augenstein et al., 2024; Dierickx et al., 2024; 
Giarelis et al., 2024). This trend has been 
so rapid that it has had an unprecedented 
impact on scientific writing, surpassing 
even the effect of major global events on 
language (Kobak et al., 2025). The academic 
community is now grappling with policies for 
disclosure and proper use of AI in manuscript 
preparation (Bhavsar et al., 2025).

	– Summarisation and translation – AI 
is also used to communicate results to 
broader audiences. For example, some 
journals and conferences utilise AI 
summarisers to generate plain-language 
summaries of technical papers for press 
releases (Glickman and Zhang, 2024; 
Markowitz, 2024). Additionally, machine 
translation powered by AI (e.g. DeepL, 
Google’s translation algorithms) enables 
research written in one language to be 
more easily understood by non-native 
speakers (Li et al., 2025; Polakova and 
Klimova, 2023), breaking down language 
barriers in science communication and 
allowing findings to reach all communities.

	– Enhanced visualisation – Communicating 
scientific results often involves charts, 
graphs and images. AI tools can assist 
in generating more effective visual 
communications (Dibia, 2023; Maddigan 
and Susnjak, 2023; A. Wu et al., 2022; Wu 
et al., 2024), for instance, by automatically 
selecting the best chart types or even 
generating schematic diagrams from data. 
There are experimental systems where a 
scientist can input raw data, and an AI tool 
suggests insightful ways to plot it or even 
creates graphical abstracts (A. Wu et al., 
2022).

	– Quality control integrity in publishing 
– Alongside generating text and images, 
AI is utilised by journals and the scientific 
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community to review communications. 
Plagiarism-detection software has long 
been used to compare manuscripts against 
databases (Gupta and Pruthi, 2025; 
Pudasaini et al., 2024). More recently, AI 
tools like Proofig have been developed 
to scan submitted papers for image 
manipulation or duplication, a known issue 
in some published works (Van Noorden and 
Perkel, 2023). These algorithms can rapidly 
compare all figures in a paper to spot if the 
same microscopy photo has been reused or 
tampered with. Similarly, there are AI-based 
tools to try to detect if a piece of text was 
likely generated by an LLM (Boutadjine et 
al., 2025; Elkhatat et al., 2023), though 
reliably detecting AI-written text remains 
challenging.

2 .7.2 CHALLENGES AND 
L IMITATIONS

A significant concern is the potential for AI models 
to hallucinate or fabricate citations and textual 
content, leading to the dissemination of false 
information (Eger et al., 2025; Elali and Rachid, 
2023; L. Huang et al., 2025; Kabir et al., 2025; 
Monge Roffarello et al., 2025; Walters and Wilder, 
2023). AI-generated text can be challenging to 
distinguish from human-written text and may 
bypass plagiarism detectors (Gupta and Pruthi, 
2025; Weber-Wulff et al., 2023). Over-reliance 
on AI can lead to superficial or banal writing that 
lacks creativity and critical analysis (Buriak et al., 
2023; Jaakkola, 2024; Zhai et al., 2024). Frequent 
use of LLMs might lead to similar paragraph 
structures and writing styles across papers 
(Bao et al., 2025; Geng and Trotta, 2024; Melliti, 
2024; Muñoz-Ortiz et al., 2024; Wenger and 
Kenett, 2025). Moreover, ethical considerations 
require transparent documentation of AI use. In 
peer review, AI can introduce biases, may not be 
accurate in assessing research quality, and can 
be exploited for generating irrelevant comments 
(Mollaki, 2024; Pataranutaporn et al., 2025; 
Seghier, 2025; Yang et al., 2025).

2.8 Build scientific community

Science is fundamentally a social endeavour, 
where researchers collaborate, share knowledge, 
peer review each other’s work, and build on 
collective insights. AI is starting to play a role 
in shaping and supporting the communities 
and networks of science, such as by facilitating 
knowledge sharing and interdisciplinary work 
within and across scientific fields (Beck et al., 
2022; Berens et al., 2023; X. Hu et al., 2025; Lu, 
2024; Xie et al., 2024).

2 .8 .1 RECURRING AND EMERGING 
TRENDS

	– Collaboration networks and partner 
matching – The same network analysis 
and recommendation algorithms that tech 
companies use can be applied to academic 
data (papers, citations, authors) to identify 
potential collaborations (Lathabai et al., 
2022; C. Liu et al., 2024). By analysing 
publication and citation networks, AI 
can identify emerging research groups, 
interdisciplinary connections, or even 
recommend mentors and mentees (Resce 
et al., 2022). For instance, if two labs 
in different countries are working on 
complementary aspects of a problem, AI 
might flag this connection, helping to form 
new collaborations.

	– Knowledge repositories and shared 
databases – AI is enabling more dynamic 
and structured ways for communities 
to share knowledge. One example is the 
Open Research Knowledge Graph (ORKG) 
(Auer et al., 2021), a platform that uses 
AI/NLP to convert published findings into 
a knowledge graph of concepts, methods, 
and results. Over the last five years, ORKG 
has grown into a vibrant platform that 
enhances the accessibility and visibility of 
scientific research, by turning unstructured 
papers into a structured, queryable 
knowledge base (Oelen et al., 2024; Stocker 
et al., 2023). This allows communities 
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to contribute and curate knowledge in a 
collective resource, making it easier to find 
related work and compare results. Such AI-
curated knowledge graphs essentially serve 
as living review papers that the community 
builds together, aided by machine 
extraction of facts and relationships 
(Auer et al., 2025). This strengthens the 
community’s shared understanding and 
helps avoid duplication of effort.

	– Citizen science and public engagement 
AI is also influencing how wider 
communities, including non-professional 
scientists, participate in research. In citizen 
science projects, volunteers team up to 
collect or classify data (e.g. identifying 
galaxies, transcribing texts, monitoring 
wildlife) (Abdul-Rahman et al., 2025; 
Fortson et al., 2024). AI is being integrated 
to support these volunteers, for example, by 
pre-filtering data so that humans focus on 
the most interesting cases, or by validating 
and aggregating volunteer contributions 
(Kumar, 2025). For instance, on the popular 
Zooniverse19 citizen science platform, AI 
image classifiers help direct volunteers 
to images likely containing the objects of 
interest (such as rare galaxies), making their 
efforts more impactful. This synergy allows 
citizen scientists to achieve more, building 
a community where human intuition and AI 
efficiency combine. Moreover, AI chatbots 
and assistants can answer basic questions 
for community members, lowering the 
barrier for public participation in scientific 
discussions (Kajiwara and Kawabata, 2024).

	– Peer review and community evaluation 
– The peer-review process, a cornerstone of 
scientific communities, is beginning to use 
AI for support, as previously highlighted. 
Some journals and conferences deploy NLP 
tools to match manuscripts with suitable 
reviewers by analysing the content of 
submissions and the expertise of reviewers. 
Additionally, AI text analysis can help spot 

19  https://www.zooniverse.org/. 

potential issues in submissions (such as 
plagiarism checks, scanning for statistical 
errors or unusual reporting patterns that 
might indicate problems). While the final 
judgment is left to human reviewers and 
editors, AI can lighten their load by catching 
obvious problems and allowing them to 
focus on deeper content issues (Alnaimat et 
al., 2025; J. Q. J. Liu et al., 2024).

	– Community involvement and 
governance – The academic community 
needs to prepare for the shift brought by AI 
and lead the discussion on how AI should 
be integrated (Chakravorti et al., 2025; 
Kohnke et al., 2025; McDonald et al., 2025; 
Vieriu and Petrea, 2025; Walter, 2024). 
This involves actively engaging with tools, 
following advancements, contributing to 
development, and defining appropriate 
use to ensure AI aligns with rigorous 
scientific principles (Huerta et al., 2023). 
Collaboration between social scientists and 
AI researchers is considered essential. There 
is a call for collaborative efforts among 
researchers, policymakers, and generative 
AI companies to create living guidelines 
for responsible AI use.20 Policies on AI use 
should be developed in collaboration with 
experts and stakeholders like peer reviewers 
and program chairs. Large systematic 
review institutions could officially make AI 
part of practice by providing guidelines.

2 .8 .2 CHALLENGES AND 
L IMITATIONS

The rapid pace of AI development presents 
a challenge for policy and regulation. There 
are risks when using tools created by private 
companies,21 as their goals may diverge from 
science and their models can be less transparent 
than academic ones (He et al., 2023; Pal, 2023; 
Resnik and Hosseini, 2025). The increasing 

20  https://european-research-area.ec.europa.eu/news/
living-guidelines-responsible-use-generative-ai-research-
published. 
21  https://www.nature.com/articles/d41586-024-02757-z. 

https://www.zooniverse.org/
https://european-research-area.ec.europa.eu/news/living-guidelines-responsible-use-generative-ai-research-published
https://european-research-area.ec.europa.eu/news/living-guidelines-responsible-use-generative-ai-research-published
https://european-research-area.ec.europa.eu/news/living-guidelines-responsible-use-generative-ai-research-published
https://www.nature.com/articles/d41586-024-02757-z
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autonomy of AI systems necessitates clear 
accountability and responsibility for developers, 
researchers, and users (Cano, 2025). Distinct 
approaches and focus areas exist between the AI 
and science communities regarding AI integration 
(Zhang et al., 2021). Training the next generation 
of scientists requires not only technical education 
but also exposure to scholarship in Science and 
Technology Studies (STS), social epistemology, and 
philosophy of science to navigate AI’s epistemic 
risks (Alvarado, 2023; Coeckelbergh, 2025). 
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3.

DEEP DIVES
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The breadth and diversity of the scientific 
community render the definition of the scientific 
method itself difficult to pinpoint. Indeed, what is 
understood as the use of Artificial Intelligence (AI) 
can be multi-faceted. In this context, to decipher 
the intricacies of AI as a tool within the context of 
the scientific method, an examination of different 
domains is pertinent to be performed. Across the 
numerous different research areas, specific deep 
dives were identified and chosen for their distinct 
ways of using AI as part of experimentation. 
The three chosen domains were selected from 
among those that, in recent years, have garnered 
both significant attention and interest, owing 
to technological advancements in the field, and 
significant funding for research progression:

	– Protein structure prediction (Section 3.1)

	– Material discovery (Section 3.2)

	– Ancient site discovery and virtual 
restoration of inscriptions (Section 3.3)

The inclusion of three distinct research fields not 
only underline how the same technology can be 
modified and applied across different application 
areas and disciplines but also showcase common 
needs of the scientific community. Within each 
of these domains, the field is described along 
with its challenges and opportunities, with 
presentations of model architectures, databases, 
and infrastructural needs. The analysis is 

complemented by an investigation, within each 
research area, of the AI usage, intended as 
the engagement of the scientific community 
with the technology, through publications of 
academic contributions, including journal articles, 
conference papers and literature reviews. This 
analysis follows the methodology established by 
the divinAI project (see Section 1.3).

3.1 Protein structure prediction

In 2024, the Nobel Prize in Chemistry recognised 
a scientific milestone in the structural biology 
field with transformative potential for life 
sciences: the accurate prediction of the three-
dimensional (3D) structure of proteins from their 
string of amino acids, powered by AI.22 Structural 
biology is the study of how biological molecules 
such as proteins and DNA are built and shaped 
in three dimensions, much like the architecture 
of tiny molecular buildings. Determining the 3D 
structure, or simply the structure, of a protein is 
crucial, as this 3D conformation enables proteins 
to perform essential functions within living 
organisms (Martin et al., 1998). Knowing the 
structures of proteins allow us to understand how 
they work, or fail to work, in health and disease 
(Dobson, 2003), enabling the development of 
targeted therapies and more effective biomedical 
interventions (Wei and McCammon, 2024). 

22  https://www.nobelprize.org/prizes/chemistry/2024/press-
release/. 

Figure 17. A protein can consist of everything from tens of amino acids to several thousand. The string of amino acids 
folds into a three-dimensional structure that is decisive for the protein’s function.

Source: Johan Jarnestad, Popular information. NobelPrize.org. Nobel Prize Outreach 2025.

https://www.nobelprize.org/prizes/chemistry/2024/press-release/
https://www.nobelprize.org/prizes/chemistry/2024/press-release/
http://NobelPrize.org
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For years, , determining the structure of a single 
protein could take months or even years of 
laboratory work using complex and expensive 
techniques like X-ray crystallography or nuclear 
magnetic resonance spectroscopy (Ledford, 
2010). Today, thanks to AI, these structures 
can be predicted with remarkable accuracy 
and speed. This revolution was catalysed by 
the convergence of a long-standing, open, and 
collaborative initiative known as the Critical 
Assessment of Structure Prediction (CASP), a 
global benchmarking effort that, since 1994, 
has brought together researchers to test and 
improve protein structure prediction methods 
(Moult et al., 1995), with rapid advances in 
computing technology and the accumulation of 
comprehensive experimental protein data.

In 2020, a major leap occurred when AlphaFold2, 
developed by DeepMind (a Google subsidiary), 
dramatically outperformed previous approaches, 
achieving around 90% accuracy (near-
experimental accuracy) in predicting a challenging 
set of protein structures (Kryshtafovych et 
al., 2021). By the next round in 2022, most 
successful participating teams had adopted 
AlphaFold2-based methods, marking a turning 
point in the field (Kryshtafovych et al., 2023). 
In parallel, these advances also enabled more 
accurate design of synthetic proteins (i.e. 
engineered molecules with new or enhanced 
functions), opening new possibilities in therapeutic 
innovation and biotechnology (Anishchenko et al., 
2021).

In a remarkably short span of time after 
AlphaFold2’s debut, the Nobel Prize recognised 
both the developers of AlphaFold2 (Demis 
Hassabis and John Jumper) alongside David 
Baker, a pioneer in protein engineering, for their 
complementary contributions to structural 
prediction and synthetic biology (Callaway, 
2024). Together, their work is driving a new era 
in biomedicine, accelerating discovery, enhancing 
our understanding of disease mechanisms, and 
unlocking innovative biotechnological applications 
(Kovalevskiy et al., 2024; Varadi and Velankar, 
2023). While the benefits are clear, this shift 

also presents challenges. These include growing 
infrastructure demands resulting from the 
increasing complexity and size of AI model 
architectures, and the need for extensive, high-
quality data.

This deep dive offers an overview of how AI is 
accelerating scientific progress in structural 
biology, highlighting both the opportunities and 
limitations as well as challenges that come with 
this rapid transformation.

3 .1.1 DATA , MODELS AND 
INFR ASTRUC TURE
The success of the advances in deciphering 
protein structure prediction is rooted in open 
science, from the availability of the training 
data to the open-source offering of models and 
prediction web servers. 

Firstly, the key models that have driven 
transformational progress in the field are 
examined. Subsequently, the computational 
resources that have made large-scale predictions 
feasible are discussed. Finally, an examination of 
the datasets that have enabled effective training 
and validation of these models is conducted.

One of the most notable aspects of recent 
advances in protein structure prediction is 
the diversity of AI architectures now being 
applied to this complex scientific problem. In 
such a scenario, especially since the release of 
AlphaFold2, an improved version of the original 
AlphaFold, new strategies have explored a 
range of Deep Learning (DL) models, each with 
different strengths depending on the use case, 
available data, and computational resources. 
Understanding these architectural differences 
helps explain why no single model can be 
considered the ‘best’ for all situations. For clarity, 
protein structure prediction models have been 
grouped into three broad categories:

1.	 Evolutionary-based models. 
Evolutionary-based models, including 
AlphaFold2 (Jumper et al., 2021), 
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RoseTTAFold (Baek et al., 2021), and 
OpenFold (Ahdritz et al., 2024), predict 
protein structures by combining the target 
protein’s sequence with evolutionary 
information extracted from Multiple 
Sequence Alignments (MSAs) and structural 
templates derived from previously solved 
3D structures of related proteins. MSAs 
capture evolutionary conservation that 
often reflects key structural features, while 
structural templates provide concrete 3D 
examples that constrain predictions. These 
models leverage transformer architectures 
(Vaswani et al., 2023), which excel at 
modelling sequential data and capturing 
long-range dependencies, enabling them 
to learn complex relationships both within 
the target sequence and across related 
sequences in the MSA and structural 
templates (Jumper et al., 2021). This 
approach delivers state-of-the-art accuracy 
not only for proteins with many known 
related sequences but also for those 
with limited evolutionary data, as DL can 
detect subtle motifs and generalise from 
large training datasets. However, these 
models are computationally intensive to 
run; generating MSAs and finding suitable 
templates require significant compute time 
and memory.23

2.	 Protein language models. A growing 
class of models known as protein language 
models, including ESMFold (Lin et al., 2023), 
OmegaFold (R. Wu et al., 2022), IgFold 
(Ruffolo et al., 2023), pLM-BLAST (Kaminski 
et al., 2023), and EMBER3D (Weissenow 
et al., 2022), have the characteristic of 
eliminating the need for MSAs. Instead, 
they treat protein sequences like natural 
language, using transformer-based 
architectures trained on large corpora 
of protein sequences to learn structural 
patterns directly from sequence data. 
These models are significantly faster and 
easier to scale across large datasets (Lin 

23  https://elearning.vib.be/courses/alphafold/lessons/
alphafold-on-the-hpc/topic/computational-limits/. 

et al., 2023), making them ideal for rapid 
screening or exploratory research. The 
trade-off is that they typically achieve lower 
structural accuracy compared to MSA-
based models (Lin et al., 2023), although 
they show advantages for achieving higher 
accuracy for newly design or orphan 
proteins, which are poorly represented in 
the training data of evolutionary-based 
methods (Chowdhury et al., 2022).

3.	 Biomolecular interaction models. A set 
of recent models, such as RoseTTAFoldNA 
(Baek et al., 2021), AlphaFold3 (Abramson 
et al., 2024), Boltz-1 (Wohlwend et al., 
2024) and Boltz-2 (Passaro et al., 2025) 
expands the prediction task of evolutionary-
based models to include molecular 
interactions between proteins and with DNA, 
RNA, or small molecules. These models 
aim to reflect the more realistic, multi-
molecular context in which proteins function. 
By predicting the structure of molecular 
assemblies, they offer valuable insights into 
biological mechanisms. However, this added 
complexity comes with higher data and 
computational demands, and some models 
in this category are not fully open source 
(Passaro et al., 2025).

In order to highlight the diversity of approaches 
per model category, in addition to the models 
mentioned above, Table 2 showcases a non-
exhaustive selection of models from each 
category, chosen based on their scientific impact, 
methodological novelty or widespread usage in 
the research community. While it is beyond the 
scope of this use case to classify these models 
as foundation models or not, some insights are 
provided that might help navigate this aspect. 
Evolutionary-based models are in essence task-
specific systems for structure prediction, and 
the field does not adopt the ‘foundation model’ 
terminology, although some authors regard them 
as ‘foundation models’ for protein-structure-
centric tasks since they can be fine-tuned for 
downstream applications such as protein design 
(Jue Wang et al., 2024). Protein language models 

https://elearning.vib.be/courses/alphafold/lessons/alphafold-on-the-hpc/topic/computational-limits/
https://elearning.vib.be/courses/alphafold/lessons/alphafold-on-the-hpc/topic/computational-limits/


42

more closely resemble foundation models since 
they are trained on massive protein sequence 
datasets in a self-supervised manner and learn 
general representations applicable to multiple 
downstream tasks including structure prediction. 
For biomolecular interaction models, while most 

are task-specific systems, emerging models 
are becoming more powerful and general, as 
exemplified by Boltz-2, which distinguishes itself 
as a general platform for biomolecular modelling, 
positioning itself as a ‘biomolecular foundation 
model’.

Table 2. Overview of representative AI models for protein structure prediction and related biomolecular modelling. 
Models are grouped by methodological approach: evolutionary-based models, protein language models, and 
models targeting biomolecular interactions. Key characteristics, open-source availability, and country/region of the 
corresponding author (used as proxy for region) are also listed.

Types Characteristics Models Open source Region Reference

Evolutionary-
based

High accuracy, 
slower, needs 
highly curated 
data

AlphaFold2 Y UK (Jumper et al., 2021)
RoseTTAFold Y US (Baek et al., 2021)
OpenFold Y US (Ahdritz et al., 2024)
FastFold Y SG (Cheng et al., 2023)
LightRoseTTA Y CN (X. Wang et al., 2025)
ScaleFold Y CN (F. Zhu et al., 2024)

Protein
language
models

Fast and
scalable, less 
accurate

ESMFold Y US (Lin et al., 2023)
ESM2-15B Y US (Lin et al., 2023)
ProstT5 Y EU (Heinzinger et al., 2024)
OmegaFold Y US (R. Wu et al., 2022)
IgFold Y US (Ruffolo et al., 2023)
pLM-BLAST Y EU (Kaminski et al., 2023)
EMBER3D Y EU (Weissenow et al., 2022)
RoseTTAFoldNA Y US (Baek et al., 2024)

Biomolecular 
interaction

Broader biologi-
cal scope, more 
data complexity, 
computationally 
intensive

AlphaFold3 N UK (Abramson et al., 2024)
Chai-1 Y US (Boitreaud et al., 2024)
AlphaFold-Multimer Y UK (Evans et al., 2022)
Boltz-1 Y US (Wohlwend et al., 2024)
Boltz-2 Y US (Passaro et al., 2025)

Source: JRC’s own elaboration.

After a comprehensive examination of recent 
advances in protein structure prediction models, 
attention now turns to the computational 
infrastructure that facilitates these developments. 
It is important to distinguish between the 
infrastructure required to train these models and 
that needed to run them once developed. Training 
DL models for protein structure prediction, 
given the complexity of the problem, which is 
considered Nondeterministic Polynomial-hard 
(Rosignoli et al., 2025), demands access to high 
performance computing environments equipped 
with powerful CPUs, advanced GPUs, and the 
capacity to process massive datasets efficiently 

(Cheng et al., 2023). The resource cost of training 
a model is reflected in the time taken in addition 
to the number and type of devices used.

Examples of different models and their respective 
resource cost are shown in Table 3 and Figure 18. 
A characteristic comparison can be seen between 
RoseTTAFold and LightRoseTTA. The former, a model 
of 130 million parameters required an approximate 
5760 GPU hours during training, while LightRoseTTA, 
at a total of 1.4 million parameters was trained at 
168 GPU hours (X. Wang et al., 2025). The variability 
in the hardware and training time for each model 
reflects not only a financial cost, but also an 
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environmental impact. Thus, there is a further 
motivation to be targeting the development of 
models of high performance and smaller size.

In contrast to training, the infrastructure 
required to use pre-trained models has become 
increasingly accessible, with web servers able 
to run models even for users with limited local 
computing power. This has resulted in the creation 
of model-as-a-service, such as the case of 
AlphaFold2 instance provided by the Centre for 
Education, Research and Innovation in Information 
and Communication Technologies (CERIT) in 

the Czech Republic,24 ColabFold25 or AlphaFold3 
server.26 From a user’s perspective, a laptop can 
submit jobs via a web UI; however, the compute 
and memory footprints are still borne by the 
remote infrastructure. Consequently, accessibility 
for end-users and the need for substantial 
investment are not contradictory: these ready-
to-use services depend on continued expansion 
of GPU-rich HPC/AI facilities to meet growing 
inference demand in science. 

24  https://www.cerit-sc.cz/infrastructure-services/tools-and-
applications/alphafold. 
25  https://colab.research.google.com/github/sokrypton/
ColabFold/blob/main/AlphaFold2.ipynb. 
26  https://alphafoldserver.com. 

Table 3. Comparative overview of selected protein structure prediction models. This illustrates the range from large-
scale, resource-intensive models (e.g. AlphaFold) to lighter, more accessible implementations (e.g. LightRoseTTA), 
highlighting differences in hardware configurations, total training time, and compute resources consumed.

Models Hardware Training time Resource

AlphaFold2 128 x TPUv3 11 days 33,792 TPU hours

OpenFold 128 x NVIDIA A1OO GPUs 8.39 days 25,774 GPU hours

FastFold 256 x NVIDIA A100 GPUs 2.81 days 20,738 GPU hours

RoseTTAFold 8 x NVIDIA V100 GPUs 30 days 5,760 GPU hours

LightRoseTTA 1 x NVIDIA RTX 3090 GPU 7 days 168 GPU hours

Source: JRC’s own elaboration based on literature contributions (Cheng et al., 2023; X. Wang et al., 2025).

Figure 18. Computation costs for various protein structure prediction models, defined in FLOPs. For models with 
available hardware information during training, FLOPs were calculated using the method described by Epoch AI’s 
‘Data on AI Models’.27
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27  https://epoch.ai/data/ai-models.

https://www.cerit-sc.cz/infrastructure-services/tools-and-applications/alphafold
https://www.cerit-sc.cz/infrastructure-services/tools-and-applications/alphafold
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb
https://alphafoldserver.com
https://epoch.ai/data/ai-models
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When software is released to the public, three 
key criteria are considered: accessibility, user-
friendliness, and ease of understanding. 
An analysis of the choices made in distributing 
protein structure prediction tools (Figure 19) 
was conducted, drawing on insights from 
Rosignoli et al. (2025). It was found that 
Graphical User Interfaces (GUIs), designed with 
UX/UI best practices, significantly enhance 
accessibility and ease of use. The analysis 
revealed that models were most often released 
via web servers, which offer high accessibility 
but may limit user control. Command-line 
tools remain popular due to their flexibility 
and efficiency in batch processing. In contrast, 
desktop applications are less frequently used, 
likely due to cross-platform compatibility issues, 
even though they provide greater control and 
independence from server-based limitations.

Figure 19. Overview of tools retrieved from ‘Protein 
folding’ topic tag in the Bio.Tools database.
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Source: JRC’s own elaboration based on data from the Bio.
Tools database (Ison et al., 2019).

Beyond computational infrastructure, the quality and accessibility of data are key to the performance 
of protein structure prediction models. Two main types of data underpin this field: experimental data 
and predicted data (see Table 4). Experimental data, derived from real-world measurements, forms the 
foundation for model training, validation, and benchmarking.

Table 4. Overview of key datasets relevant to protein folding and structure prediction. Where available, the size of 
each dataset is an estimation.

Type Dataset
No. of protein 

structure 
Size Description Base Reference

Experi-
mental

PDB 240K 60 GB 3D structure Global (Ormö et al., 1996)
Pfam 

(v.33.1)
47M 141 GB Protein families UK, EU

(Paysan-Lafosse et al., 
2025)

SCOP N/A N/A
Structural 

classification
UK, EU

(Andreeva et al., 2020, 
2014)

SCOPe N/A 86 MB
Extended 

version of SCOP
US

(Chandonia et al., 2022; 
Fox et al., 2014)

CATH43 N/A
1073 
MB

Hierarchical 
classification

UK (Sillitoe et al., 2021)

Predicted

Alpha-
FoldDB

214M 23 TB 3D structures UK
(Jumper et al., 2021; 
Varadi et al., 2022a)

ESM 
Metagen-
omic Atlas

772M 15 TB
Metagenomic 

protein 
structures

US (Lin et al., 2023)
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Type Dataset
No. of protein 

structure 
Size Description Base Reference

Both

UniProtKB/
Swiss-Prot

500K
590 
MB

Knowledge base
UK, EU, 
CH, US

(The UniProt Consortium, 
2025)

UniProtKB/ 
TrEMBL

2.29M 146 GB Knowledge base
UK, EU, 
CH, US

(The UniProt Consortium, 
2025)

UniRef100 314M
76.9 
GB

Clustered sets 
of sequences

UK, EU, 
CH, US

(The UniProt Consortium, 
2025)

UniRef90 150M 34 GB 90% identity
UK, EU, 
CH, US

(The UniProt Consortium, 
2025)

UniRef50 53M
10.3 
GB

50% identity
UK, EU, 
CH, US

(The UniProt Consortium, 
2025)

UniParc 5.28M 106 GB Sequence
UK, EU, 
CH, US

(The UniProt Consortium, 
2025)

BFD 2.5B 272 GB
Sequence 

profile
KR

(Jumper et al., 2021; 
Steinegger et al., 2019; 
Steinegger and Söding, 
2018)

MGNify 2.4B 165 GB 

Microbiome-
derived 

sequence data 
and predicted 

structures

UK (Richardson et al., 2023)

Uniclust30 N/A 6.6 GB
Clustered 
protein 

sequences
EU (Mirdita et al., 2017)

Source: JRC’s own elaboration based on literature contributions (Hu et al., 2022).

Significant efforts by the scientific community 
have led to the collection and curation of this data 
into publicly available repositories, most notably 
the Protein Data Bank (PDB)28 (Ormö et al., 1996)
a database of experimentally determined protein 
structures, which contained nearly 240,000 
structures as of June 2025. The database is 
maintained by the Worldwide Protein Data Bank 
(wwPDB), whose members are; the Research 
Collaboratory for Structural Bioinformatics 
Protein Data Bank (RCSB PDB), which acts as 
the maintainer of the archive, the Protein Data 
Bank in Europe (PDBe), the Protein Data Bank 
Japan (PDBj), the Biological Magnetic Resonance 
Data Bank (BMRB) and the Electron Microscopy 
Data Bank (EMDB). The experimental data from 
the research community is sent to one of the 
member organisations and processed at that 
level. Following processing, the data reaches the 

28  https://www.ebi.ac.uk/pdbe/. 

archive-maintaining organisation, which makes 
the data available to all users.29 This makes the 
wwPDB a ‘data publisher’ model for AI-ready 
science: it aggregates primary experimental 
results, standardises metadata/formats and 
provides stable, public access, which are practices 
that have accelerated structure-aware AI.

Among the key partners of the PDB is the European 
Molecular Biology Laboratory (EMBL),30 a leading 
life sciences research organisation. It focuses on 
fundamental research, technology development, 
and training to advance understanding of biological 
systems. The EMBL plays a fundamental role 
in data activities, being a key partner of the 
most important scientific datasets, like the PDB, 
fundamental for the development of AlphaFold2 

29  https://www.ebi.ac.uk/pdbe/news/wwpdb-charter-full-
and-associate-members/. 
30  https://www.embl.org/. 

https://www.ebi.ac.uk/pdbe/
https://www.ebi.ac.uk/pdbe/news/wwpdb-charter-full-and-associate-members/
https://www.ebi.ac.uk/pdbe/news/wwpdb-charter-full-and-associate-members/
https://www.embl.org/
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(Jumper et al., 2021). The EMBL embraces AI as a 
powerful tool that is and will continue to fast-track 
scientific discovery and it has developed its own 
AI strategy. Similarly, other research institutions 
are also leveraging AI to drive innovation in 
biomedicine. For instance, AITHYRA31 is a pioneering 
research institute established by the Austrian 
Academy of Sciences to advance biomedicine 
through artificial intelligence. Launched in 2024 
with a €150 million grant from the Boehringer 
Ingelheim Foundation, it aims to revolutionise 
disease understanding and treatment development 
by integrating AI early in biomedical research 
processes. The institute emphasises open-access 
principles, ensuring its research data is freely 
available to the global scientific community.

In addition, large biological sequence databases, 
such as UniProt (The UniProt Consortium, 2025), 
MGnify (Richardson et al., 2023) and Big Fantastic 
Database (BFD) (Jumper et al., 2021; Steinegger 
et al., 2019; Steinegger and Söding, 2018), play a 
crucial role by providing the amino acid sequences 
that serve as input for protein structure prediction 
models. UniProt is coordinated by the EMBL’s 
European Bioinformatics Institute (EMBL-EBI) 
in the UK, the Swiss Institute of Bioinformatics 
(SIB) in Switzerland, and the Protein Information 
Resource (PIR) in the US. MGnify is also based at 
the EBI in the UK and focuses on metagenomic 
data analysis. The BFD repository, although not 
tied to a specific location, is a collaborative effort 
supporting large-scale computational projects with 
extensive sequence data. Unlike the PDB, which 
focuses on experimentally determined protein 
structures and often involves meticulous manual 
curation, the sequence databases may not always 
undergo the same level of manual oversight. 
Instead, they rely heavily on automated processes 
to compile vast amounts of sequence data from 
various sources. This approach allows them to 
quickly incorporate new sequences, keeping 
pace with the rapid advances in sequencing 
technologies and the ever-expanding volume of 
genomic data. However, it also means that the 
data might include redundancies or errors that 
require further validation and curation. Despite 

31  https://www.oeaw.ac.at/aithyra. 

these challenges, these sequence repositories 
are invaluable resources for researchers, offering 
a comprehensive and up-to-date collection of 
amino acid sequences essential for advancing 
computational biology and bioinformatics.

With the advent of AlphaFold2 and other recent 
methods (see Table 2), it is now possible to 
generate structural predictions at scale, including 
for many proteins that previously lacked resolved 
structures. For example, the AlphaFold Protein 
Structure Database (Jumper et al., 2021), 
developed by DeepMind and EMBL-EBI, includes 
over 200 million predicted protein structures, 
covering nearly all proteins from 48 species. It is 
important to know that they vary in quality (Akdel 
et al., 2022), and are not always a substitute 
for high-resolution experimental data. However, 
they significantly complement experimentally 
determined structures, narrowing the structural 
knowledge gap, especially for the human proteins 
(Porta-Pardo et al., 2022). Another example is the 
ESM Metagenomic Atlas (Lin et al., 2023), which 
contains over 772 million predicted structures. 
The ESM Metagenomic Atlas is hosted by Meta, 
in the US. Given the diverse array of datasets 
and databases available, standardisation 
becomes essential. The 3D-Beacons initiative, 
hosted by EMBL-EBI, unifies predicted and 
experimental structure models from various of 
the aforementioned sources (PDBe, AlphaFold DB, 
SWISS-MODEL, among others) into a common 
framework with standardised formats and open 
access under the Creative Commons Attribution 
4.0 license (Varadi et al., 2022b). This simplifies 
integration and broadens usability across research 
domains.

Managing these large datasets requires robust 
infrastructure. When hosted on-premises, High-
Performance Computing (HPC) clusters are often 
necessary, but public access to major databases 
helps reduce technical barriers. Many of these 
databases are open to community contributions, 
encouraging collaboration and continuous 
improvement.

https://www.oeaw.ac.at/aithyra
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The illustrated recent advances in protein 
structure prediction illustrate how open science, 
cutting-edge AI models, and shared infrastructure 
can drive rapid progress in a complex scientific 
domain. These developments highlight the 
strategic value of investing in open, interoperable 
AI ecosystems for scientific innovation. It is crucial 
that these developments continue to advance 
openly, ensuring the pace of scientific progress.

3 .1.2 SAFE AND TRUST WORTHY AI , 
ETHIC AL CONSIDER ATIONS AND 
CHALLENGES

The use of AI in protein structure prediction 
demands a high degree of trustworthiness due to 
its far-reaching implications for drug discovery, 
therapeutic development, and biological research. 
As models like AlphaFold2 increasingly influence 
experimental design (Edich et al., 2022), resource 
allocation,32 and even clinical implementation,33 
it is essential to ensure their reliability, 
reproducibility, and transparency to uphold 
scientific integrity and public trust.

Unlike many widely used AI systems, such as 
large language models like ChatGPT, that often 
lack explicit confidence scores, protein structure 
prediction tools like AlphaFold incorporate built-in 
metrics. The most used one is the predicted Local 
Distance Difference Test (pLDDT), a confidence 
score that allows users to judge the quality of the 
results for each amino acid in the protein structure 
(Jumper et al., 2021). Similarly, protein language 
models provide log-likelihood or perplexity metrics 
to assess the confidence of predictions, which 
have been shown to correlate with the quality of 
structure prediction (Lin et al., 2023).

Still, even with these metrics, uncertainty 
estimates remain imperfect, especially for 
challenging cases that are underrepresented in 

32  https://techfundingnews.com/50m-for-ai-programmable-
biology-latent-labs-led-by-deepminds-alphafold-alumnus-
to-design-novel-proteins/. 
33  https://deepmind.google/discover/blog/stopping-malaria-
in-its-tracks/. 

training data, such as flexible protein regions 
that lack fixed structure (Alderson et al., 2023) or 
proteins embedded in cell membranes (Dobson et 
al., 2023), many of which are clinically relevant. 
For example, Agarwal and McShan (2024) stated 
that current implementations of AlphaFold2 can 
provide highly accurate working models for most 
rigid, well-folded globular proteins, but may have 
issues predicting other classes of proteins. This 
limitation usually arises from the difficulty of 
experimentally obtaining data of protein structures 
that are not globular, that is, proteins that are 
not typical, compact, and stable, given the special 
experimental conditions required to isolate them. 
Moreover, for available structures, experimental 
conditions may introduce biases since the high-
salt conditions used to stabilise proteins for 
X-ray and Nuclear Magnetic Resonance (NMR) 
measurements differ from cellular environments. 
Proteins can also adopt different conformations 
depending on their cellular context and functional 
states, adding variability not captured in static 
experimental structures. These combined factors, 
limited experimental data for non-globular 
proteins and potential biases in existing structures, 
result in less reliable predictions and confidence 
estimates for challenging protein classes.

Another source of bias stems from the type 
of experimental data by organism: the most 
represented organism is human (31% of the 
database entries), followed by synthetic constructs 
and mice (4% each), and the bacterium E. coli 
(3%).34 This highlights a clear bias in organism 
representation, which dominates the training 
data and results in better predictions for these 
organisms compared to less studied ones. This 
organism bias becomes even more problematic 
in the context of data obsolescence. Protein 
sequences in reference databases like UniProt 
are regularly updated, whereas models in 
the AlphaFold DB remain static. Well-studied 
organisms such as humans and mice, which 
dominate the training data, show relatively stable 
protein sequences, with only 2.8% and 2.4% 
discrepancies, respectively, between AlphaFold 

34  https://www.rcsb.org/stats/explore/scientific_name_of_
source_organism/. 

https://techfundingnews.com/50m-for-ai-programmable-biology-latent-labs-led-by-deepminds-alphafold-alumnus-to-design-novel-proteins/
https://techfundingnews.com/50m-for-ai-programmable-biology-latent-labs-led-by-deepminds-alphafold-alumnus-to-design-novel-proteins/
https://techfundingnews.com/50m-for-ai-programmable-biology-latent-labs-led-by-deepminds-alphafold-alumnus-to-design-novel-proteins/
https://deepmind.google/discover/blog/stopping-malaria-in-its-tracks/
https://deepmind.google/discover/blog/stopping-malaria-in-its-tracks/
https://www.rcsb.org/stats/explore/scientific_name_of_source_organism/
https://www.rcsb.org/stats/explore/scientific_name_of_source_organism/
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models and current UniProt entries (Tsitsa et 
al., 2025). In contrast, less intensively studied 
organisms face significant obsolescence issues. 
For instance, the zebrafish (Danio rerio) shows 
a 43.4% discrepancy, with nearly half of its 
AlphaFold models no longer corresponding to 
current UniProt sequences due to major curation 
efforts (Tsitsa et al., 2025). These issues can 
limit researchers with restricted computational 
resources who cannot continuously update protein 
structure predictions, forcing them to rely on 
potentially outdated models that may no longer 
accurately represent current sequence data.

Despite these biases and limitations, the scientific 
community has recognised that for many cases, 
results are highly accurate, enabling reliable 
predictions and representing a transformative 
advancement in structural biology (Akdel et al., 
2022). Tasks that were previously infeasible, such 
as predicting proteins with scarce evolutionary 
information, making them especially difficult, 
are now achievable in specific contexts (Porta-
Pardo et al., 2022), providing researchers with 
structural insights for thousands of proteins 
that would otherwise remain experimentally 
uncharacterised. This represents a paradigm shift: 
even with imperfect confidence estimates, having 
reasonable structural predictions for previously 
inaccessible proteins, including neglected disease 
targets (Porta-Pardo et al., 2022) and proteins 
from plant organisms critical for environmental 
research (Lin et al., 2025), constitutes an 
enormous step forward for biological research. 
However, substantial challenges remain ahead, as 
research has demonstrated that computational 
models designed to predict molecular interactions 
require significant improvement before they can 
effectively identify drug mechanisms of action 
(Wong et al., 2022), indicating that the path from 
structural prediction to clinical application involves 
considerable additional hurdles.

The field is actively working to address 
these challenges and emerging ones 
through community-driven initiatives. These 
efforts, exemplified by the CASP competition 
(Kryshtafovych et al., 2023), have inspired 

other scientific communities to adopt similar 
collaborative approaches, such as the Virtual 
Cell Challenge (Roohani et al., 2025). Therefore, 
it is vital that these community initiatives 
are maintained given the significant positive 
impact in the structural biology field. Dedicated 
structural funding is essential to avoid putting 
scientific progress at risk, as evidenced by the 
concerning potential end of the long-running CASP 
competition due to discontinuation of funding.35

Beyond improving prediction accuracy, the field is 
witnessing remarkable advances in protein design 
capabilities. Generative models are increasingly 
capable not only of predicting natural proteins 
but also of designing novel proteins with desired 
biological functions (Anishchenko et al., 2021). This 
development holds great promise for accelerating 
biomedical breakthroughs. However, it also raises 
serious biosecurity concerns. These same tools 
could be misused to engineer harmful proteins, 
evade biosafety filters or support dual-use research.

At present, the risk of misuse is currently limited 
by the need for users with advanced expertise 
in both molecular biology and machine learning, 
as well as by technical limitations (Peppin et al., 
2024). For example, current protein structure 
prediction models do not fully account for real-life 
factors like chemical changes to the protein, how 
it folds inside the cell or how it interacts with other 
proteins. However, these constraints could rapidly 
diminish as the models become more advanced 
and more accessible, which is witnessed through 
the increasingly more central role that LLMs 
are assuming in instances such as the provision 
of guidance on protocols. To help mitigate 
these risks, the developers of AlphaFold3 have 
implemented technical safeguards and responsible 
use principles,36,37 for example, restricting the 
modelling of certain viral proteins on server-based 
platforms. Still, locally run or stand-alone versions 
remain less regulated.

35  https://www.science.org/content/article/exclusive-famed-
protein-structure-competition-nears-end-nih-grant-money-
runs-out/. 
36  https://alphafoldserver.com/terms/. 
37  https://alphafoldserver.com/output-terms/. 

https://www.science.org/content/article/exclusive-famed-protein-structure-competition-nears-end-nih-grant-money-runs-out/
https://www.science.org/content/article/exclusive-famed-protein-structure-competition-nears-end-nih-grant-money-runs-out/
https://www.science.org/content/article/exclusive-famed-protein-structure-competition-nears-end-nih-grant-money-runs-out/
https://alphafoldserver.com/terms/
https://alphafoldserver.com/output-terms/
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To proactively address emerging risks, policy 
frameworks around biosecurity and AI are 
beginning to take shape. The first International 
AI Safety Report (Bengio et al., 2025) and 
the Federation of American Scientists38 has 
emphasised the need for clear risk mitigation 
strategies and biosecurity guidelines in the 
context of AI. Leading scientists and organisations 
have also contributed frameworks and raised 
concerns focused about AI-related biological 
risks (Bloomfield et al., 2024), including efforts 
specific to AI-driven protein design (Baker and 
Church, 2024; M. Wang et al., 2025). Leading tech/
AI companies are also raising concerns and risk 
levels.39,40 These initiatives collectively underscore 
the importance of identifying and mitigating 
potential risks posed by biomolecular AI models 
capable of generating novel proteins or other 
molecules with harmful biological effects.

Managing these risks is particularly challenging 
because open, global AI and biological research 
are essential to preserving scientific progress 
and international collaboration. Among ongoing 
governance efforts, the EU has taken a leading 
role. 

In summary, given the current state of AI 
development in the protein field, it is still too 
early to anticipate all potential risks. However, 
it is encouraging to see that expert groups 
and regulators are proactively prioritising this 
issue. Moving forward, the governance of AI in 
protein science, and in the life sciences more 
broadly, must strike a careful balance: enabling 
innovation while implementing safeguards that 
are technically sound, internationally coordinated, 
and responsive to rapidly evolving capabilities and 
threats.

38  https://fas.org/publication/bio-x-ai-policy-
recommendations/. 
39  https://cdn.openai.com/pdf/18a02b5d-6b67-4cec-ab64-
68cdfbddebcd/preparedness-framework-v2.pdf. 
40  https://www.anthropic.com/news/anthropics-responsible-
scaling-policy/. 

3 .1.3 SKILLS AND INNOVATION

The breakthrough of AI-driven protein structure 
prediction, exemplified by tools like AlphaFold2 
and others (see Table 2), illustrates not only the 
power of algorithms but also the evolving profile 
of the modern researcher, the AI-powered (protein) 
researcher. This transformation has important 
implications for both the skillset needed in 
research and the broader innovation landscape.

Modern research workflows demand an 
interdisciplinary blend of expertise. The future-
ready AI-powered researcher and teams combines 
deep domain knowledge in structural biology 
with proficiency in ML methods, data science, 
and software engineering. This hybrid expertise 
enables them to curate complex biological 
datasets, critically assess model predictions, and 
adapt AI tools to answer new scientific questions. 
A striking example of this interplay emerged 
right after the release of AlphaFold2 results: 
research groups rapidly integrated advanced DL 
architectures with structural biology insights, 
resulting in alternative implementations and 
open-source projects such as RoseTTAFold and 
later OpenFold (Table 2). This agility reflects 
a new generation of researchers capable of 
understanding both the complexity of AI models 
and their biological implications.

Yet technical skills alone are insufficient. 
Successful AI-powered researchers also need a 
collaborative mindset to bridge computational 
and experimental disciplines. The impact of 
this collaborative spirit is exemplified by the 
partnership between the EMBL-EBI and DeepMind, 
which led to the co-creation of the AlphaFold 
Database. EMBL, with over 110 research groups 
covering the breadth of molecular biology 
(Stephen Cusack et al., 2021), contributed 
expertise in data curation and integration, 
making AlphaFold’s predictions broadly accessible 
and usable within the biomolecular research 
community. This collaboration not only produced 
a resource covering millions of protein structures 
but also advanced data standards and delivered 
targeted predictions, for example, for 17 

https://fas.org/publication/bio-x-ai-policy-recommendations/
https://fas.org/publication/bio-x-ai-policy-recommendations/
https://cdn.openai.com/pdf/18a02b5d-6b67-4cec-ab64-68cdfbddebcd/preparedness-framework-v2.pdf
https://cdn.openai.com/pdf/18a02b5d-6b67-4cec-ab64-68cdfbddebcd/preparedness-framework-v2.pdf
https://www.anthropic.com/news/anthropics-responsible-scaling-policy/
https://www.anthropic.com/news/anthropics-responsible-scaling-policy/
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organisms on the World Health Organization 
(WHO)’s list of neglected tropical diseases and for 
10 organisms linked to antimicrobial resistance 
(Stephen Cusack et al., 2021).

In addition, the AI-powered researcher must 
actively address ethical considerations, data 
biases, and reproducibility challenges inherent 
to AI-driven science. While AI research has long 
explored interpretability and explainability in 
health (Bertolini et al., 2025), these aspects 
remain less developed in protein biological 
contexts, though initial efforts have begun in 
protein structure prediction (Cheng et al., 2023; 
Parsan et al., 2025; Vecchietti et al., 2024) and 
protein design (Hunklinger and Ferruz, 2025; 
Medina-Ortiz et al., 2025).

In EU, the AI-powered research profile is increasingly 
supported by initiatives like the European AI 
Factories,41 which will bring together data resources, 
compute infrastructure, and interdisciplinary 
expertise to help scientists harness AI effectively. 
Such environments enable researchers not only to 
apply existing models but also to innovate at the 
intersection of biology and artificial intelligence, 
bridging algorithmic development and biological 
discovery to advance the field even further. 
Complementary programs, like the MSCA (Marie 
Skłodowska-Curie Actions) Doctoral Networks and 
MSCA co-fund actions, are already supporting talent 
pipelines and collaborations that help researchers 
apply existing models and innovate at the interface 
of biology and AI.

The increasing accessibility of AI-powered protein 
structure prediction models is fundamentally 
changing the research landscape, fostering 
new opportunities for collaboration between 
academia and industry. This shift highlights 
how a combination of technical breakthroughs, 
open science principles, and user-friendly tools 
is accelerating the translation of foundational 
discoveries into practical applications and 
amplifying their real-world impact.

41  https://digital-strategy.ec.europa.eu/en/policies/ai-
factories/. 

The dynamic landscape of startups plays a crucial 
role in driving the field forward. Startups advance 
innovation across four key areas: improving 
precision and prediction through novel algorithms; 
building collaborative networks with research 
groups; exploring new therapeutic frontiers; and 
creating technological synergies by integrating 
AI with other cutting-edge approaches. Their 
agility enables them to pivot quickly and establish 
impactful collaborations. However, they also 
face challenges, such as the need for significant 
computational resources and navigating complex 
regulatory landscapes, areas that can become 
opportunities for differentiation and optimisation. 
Examples of such startups include AlphaFold AI; 
ProteoDesign, which engineers proteins for specific 
functions; FoldLogic, which addresses protein 
misfolding; and EnzymeCorp, which focuses on 
industrial enzyme applications.42 Horizon Europe 
contributes to innovation by supporting start-ups 
through the European Innovation Council (EIC) and 
AI investments to unlock the power of data and 
AI for breakthrough innovation, helping translate 
emerging discoveries into practical applications 
and products while facilitating the journey from 
laboratory research to market deployment.

Ultimately, by investing in researchers who are as 
comfortable working with algorithms as they are 
interpreting biological meaning, and by fostering 
environments where AI tools are designed for 
usability and transparency, the field can ensure 
that breakthroughs move swiftly and responsibly 
from computational models to tangible benefits in 
medicine and beyond. This interdisciplinary fluency 
is indeed crucial, but equally important is fostering 
collaboration between computational and 
biological experts. Since comprehensive expertise 
across both domains is scarce, creating structured 
opportunities for sustained partnerships between 
AI specialists and domain experts becomes 
essential, which ensures that computational power 
is paired with deep biological insight.

42  https://fastercapital.com/content/Protein-folding-and-
aggregation--Startups-and-Protein-Folding--Navigating-
Complexity-for-Success.html. 

https://digital-strategy.ec.europa.eu/en/policies/ai-factories/
https://digital-strategy.ec.europa.eu/en/policies/ai-factories/
https://fastercapital.com/content/Protein-folding-and-aggregation--Startups-and-Protein-Folding--Navigating-Complexity-for-Success.html
https://fastercapital.com/content/Protein-folding-and-aggregation--Startups-and-Protein-Folding--Navigating-Complexity-for-Success.html
https://fastercapital.com/content/Protein-folding-and-aggregation--Startups-and-Protein-Folding--Navigating-Complexity-for-Success.html
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3.1.4 RESEARCH COMMUNIT Y

Protein structure prediction using AI is recognised 
as a highly interdisciplinary endeavour, situated 
at the intersection of computational science, ML, 
biology, and biophysics. This field has rapidly 
advanced due to open collaboration among 
researchers, industry practitioners and government-
funded institutions across the globe. To provide a 
more detailed illustration of the evolution of this 
research community, an analysis was conducted 
on 12,307 publications indexed in Scopus between 
January 2020 and May 2025 and retrieved 
following the methodology described in Section 
1.3. This investigation focused on articles, reviews 

and conference papers considering the keywords 
described in Table 1. This quantitative overview 
highlights the geographical distribution of research 
activity (Figure 20), the diversity of contributing 
institutions (Figure 21 and Figure 22), and the 
collaborative framework that supports scientific 
progress in this AI-driven domain (Figure 23).

In terms of geographical distribution (Figure 
20), the largest number of publications within 
the defined scope originated from China (2,616; 
21.3% of total), the US (2,418; 19.6% of total), EU 
(2,181; 17.7% of total), India (877; 7.1% of total) 
and the UK (618; 5% of total).

Figure 20. Global geographical distributions of scientific literature contributions related to ‘protein structure 
predictions’ topics, indexed by Scopus between Jan. 2020 and May 2025.
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Publications were produced by a diverse set 
of establishments, with universities being 
the predominant contributors, followed by 
companies and government research facilities 
(Figure 21). This breakdown underscores the 
central role of academia in advancing the field, 
while also highlighting significant engagement 
from industry and public research institutions. 
A higher percentage of publications from EU 
research facilities is observed in comparison 
to other countries/regions, which highlights the 
government investment in the studies and the 
presence at the heart of how research is driven 
in EU.

Figure 21. Distribution of ‘protein structure prediction’ 
literature contributions by type of establishments and 
geographical area. Considered contributions are indexed 
by Scopus between Jan. 2020 and May 2025.
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Taking a closer look at the synergies within 
Europe, a more granular analysis of the data 
shows a spread of research contributions across 
different types of establishments (Figure 22). It is 
evident that publications are consistently driven 
by educational establishments. This distribution 
reflects that open-source datasets and pre-
trained models have significantly lowered the 
barriers to entry, enabling research groups from 
both larger and smaller institutions to engage in 
an area that previously demanded substantial 
computational costs. For example, AlphaFold2 
was reported to have been trained on 128 TPUs 
(Cheng et al., 2023), greater than the combined 

resource intensity of all the competing teams 
in the CASP’s 14th edition in 2020.43 Thanks to 
community resources and shared infrastructure, 
many European laboratories are now able to 
participate actively, despite having smaller local 
compute budgets. In terms of private sector, 
which includes start-ups and scale-ups, an 
increase of 325% can be observed in the period 
2020-2024.

43  https://www.blopig.com/blog/2020/12/casp14-what-
google-deepminds-alphafold-2-really-achieved-and-what-
it-means-for-protein-folding-biology-and-bioinformatics/. 

Figure 22. Amount of ‘protein structure prediction’ literature contributions across EU countries by type of 
establishments over the years from Jan. 2020 to May 2025. Considered contributions are indexed by Scopus.
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Beyond the diversity of institutions, collaboration 
also plays a critical role. Patterns were examined 
by analysing co-authorship networks based 
on a selected set of publications. The analysis 
indicates that the largest cross-regional 
partnership is identified between the EU and 
the US, as well as between the US and both 
the EU and China (Figure 23(a)). A finer level 
of granularity was then applied to investigate 
collaboration patterns within the EU by type of 
establishment (Figure 23(b)). Data reveal that the 
most common connection (among different type 
of establishments) occurs between educational 

institutions and either research facilities or 
companies. Additional, though less frequent, 
relevant collaborations involve universities 
working with government bodies, healthcare 
institutions and non-profit organisations.

https://www.blopig.com/blog/2020/12/casp14-what-google-deepminds-alphafold-2-really-achieved-and-what-it-means-for-protein-folding-biology-and-bioinformatics/
https://www.blopig.com/blog/2020/12/casp14-what-google-deepminds-alphafold-2-really-achieved-and-what-it-means-for-protein-folding-biology-and-bioinformatics/
https://www.blopig.com/blog/2020/12/casp14-what-google-deepminds-alphafold-2-really-achieved-and-what-it-means-for-protein-folding-biology-and-bioinformatics/
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Figure 23. Collaboration patterns in ‘protein structure prediction’ field. Amount of co-authored literature 
contributions by (a) geographical area and (b) type of establishments (only EU). Considered contributions are indexed 
by Scopus between Jan. 2020 and May 2025.
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Protein structure prediction: Take-home messages

	– AI has enabled a paradigm shift in structural biology by accurately predicting protein 
structures with near-experimental precision, a breakthrough recognised by the Nobel Prize in 
Chemistry in 2024.

	– This success is underpinned by a commitment to open science, leveraging publicly available 
datasets (e.g. PDB, UniProt) and collaborative benchmarking efforts (e.g. CASP).

	– While training these models requires significant computational resources, the dissemination 
of pre-trained models through web tools and shared infrastructures has democratised their 
use for the wider scientific community.

	– Despite these advances, challenges remain in predicting the structures of non-globular 
proteins and addressing data biases. The dual-use potential of protein design models also 
necessitates proactive biosecurity and governance frameworks.

3.2 Material discovery
Materials science is undergoing a transformation 
fuelled by the integration of AI, which is reshaping 
the landscape of material discovery. AI’s 
capability to rapidly accelerate material discovery 
holds the potential to revolutionise critical areas 
such as carbon capture (Manikandan et al., 2025), 
semiconductor design (Raghuwanshi, 2024), 
energy storage (Zhao et al., 2020), catalysis 
(Zhao et al., 2019), and biomaterials (Pugliese 

et al., 2025), paving the way for real-world 
applications such as more efficient solar panels, 
improved batteries for electric vehicles, innovative 
catalysts for emission reduction, and personalised 
medicine. Therefore, this acceleration is not just 
a matter of speed. It has profound implications 
for sustainability, energy efficiency, and the 
development of novel technologies that could 
redefine our interaction with the natural world.



54

Historically, materials discovery has been a 
labour-intensive and time-consuming process, 
relying on human intuition, knowledge, and 
exhaustive trial and error experimentation, with 
long iteration cycles which limited the number of 
candidates that could be tested. Thanks to the 
availability of open material databases (Curtarolo 
et al., 2012; Kirklin et al., 2015; Scheidgen et al., 
2023; Talirz et al., 2020) and recent advances 
in high-throughput screening (Curtarolo et al., 
2013) and AI-based property predictors, it is now 
possible to screen hundreds of thousands of 
materials and identify promising candidates in a 
substantially shorter time.

Despite their advantages, screening-based 
methods are still fundamentally constrained by 
the number of known materials. For example, 
the largest explorations of previously unknown 
crystalline materials are on the order of 107 (Zeni 
et al., 2025), which is only a small fraction of the 
number of potentially stable inorganic compounds 
(Davies et al., 2016). Furthermore, these methods 
have not yet been shown to be efficiently steered 
towards discovering materials with specific target 
properties.

Given these limitations, there has been growing 
interest in the so-called inverse material design 
approach (property-to-structure), which represent 
a paradigm shift in material discovery. Rather than 
starting with a known set of material structures 
and predicting their properties, the inverse 
approach begins by defining a set of desired 
properties (constraints) and seeks to identify 
the corresponding molecular or extended crystal 
structures that satisfy them (Park and Choi, 2024) 
(see Figure 24). Initial approaches to achieving 
the goal of inverse design were based on global 
optimisation in the chemical space, for example 
by using gradient descent (Freeze et al., 2019) 
or evolutionary methods (Allahyari and Oganov, 
2020). However, the most promising approaches 
are based on generative AI (GenAI) models.

Figure 24. Schematic representation of high-
throughput materials screening and generative inverse 
material design approaches.
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In essence, a GenAI model is trained to map 
input data, in the form of a numerical tensor 
that encompasses chemical composition, crystal 
structure and relevant physical properties of 
each material, to a latent or feature space 
represented as a joint probability distribution. 
This mapping is typically referred to as encoding, 
and the inverse process is called decoding, which 
involves transforming from the latent space back 
into the original data space. Both encoding and 
decoding models are obtained through learning 
from a large amount of data. Generation is then 
the creative process by which novel compounds 
are produced by sampling from the joint 
probability distribution and decoding back into 
the original input space (Park et al., 2024). The 
most commonly used GenAI model architectures 
adopted in this domain are:

	– Variational Autoencoders (VAEs), which 
combine an encoder that maps input 
data to a continuous learned latent 
representation with a decoder that 
generates samples by drawing from the 
probability distribution.

	– Generative Adversarial Networks (GANs), 
which are based on a generator model 
that produces synthetic data, and a 
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discriminator model trained to distinguish 
between real and synthetic data.

	– Autoregressive transformer-based 
architectures, including encoder-only and 
decoder-only attention-based approaches, 
which are widely used for LLMs.

	– Graph Neural Networks (GNNs), while not 
inherently a GenAI model, can be utilised 
as a component in various generative 
architectures such as graph VAEs and graph 
GANs to generalise Neural Networks (NNs) 
to irregular-shaped graph structures such 
as chemical graphs of atoms and bonds, 3D 
structures, or point clouds of atoms, enabling 
the learning of complex relationships and 
patterns in material structures.

	– Diffusion models, emerging architectures 
that generate sampled materials through a 
series of iterative stochastic transformations 
applied to an initial noisy data distribution.

While inverse design represents a central and 
rapidly advancing area of AI-driven materials 
discovery, it is worth noticing that it is not the only 
relevant application. AI is also increasingly used 
to analyse experimental and simulation data, 
identify structure–property relationships, and 
optimise synthesis or processing conditions (Jiang 
et al., 2025; Li et al., 2020; Pyzer-Knapp et al., 
2022; Wang and Zhang, 2025).

3 .2 .1 DATA , MODELS AND 
INFR ASTRUC TURE
As in other domains, advancements in materials 
science have been driven by the combination 
of new computational approaches and open-
access datasets. These have been instrumental 
in material simulation, property prediction, high-
throughput screening and, more recently, inverse 
design. The number of database and dataset 
resources in materials science is remarkable 
(Oturak, 2025). Table 5 highlights some of the 
most relevant resources that are fundamental for 
material discovery. 

One of the most important examples is the 
Materials Project (Jain et al., 2013) which is a 
multi-institution, multi-national effort to compute 
the properties of all inorganic materials and 
openly provide the data and associated analysis 
algorithms. The project was established in 2011, 
and so far (July 2025), they provide more than 
200K materials and 577K molecules44 (see Figure 
25). Other well-known databases are AFLOW 
(Curtarolo et al., 2012), an open-access database 
of more than 3.5M material compounds with 
over 743M calculated properties; Novel Materials 
Discovery (NOMAD) laboratory (Scheidgen et al., 
2023), which contains more than 100M high-
quality calculations; Open Quantum Materials 
Database (OQMD) (Kirklin et al., 2015), which 
provides Density Functional Theory (DFT) 
calculated thermodynamic and structural 
properties of more than 1.3M materials; GNoME 
(Merchant et al., 2023), which released more than 
2.2M predicted new crystals, including 380K stable 
materials; and Alexandria (Schmidt et al., 2023), 
that contains more than 5M DFT calculations for 
periodic 3D, 2D and 1D compounds.

Table 5. Summary of some of the most representative 
materials science databases and repositories, in 
chronological order, including database name, type of 
data (empirical/computational), open-source availability, 
country/region of the original contribution (used as 
proxy for region) and literature reference.

Data-
base Type Open 

source Region Reference

AFLOW Compu-
tational Y US (Curtarolo et 

al., 2012)
Mate-
rials 

Project

Compu-
tational Y US (Jain et al., 

2013)

OQMD Compu-
tational Y US (Kirklin et al., 

2015)

NOMAD Compu-
tational Y EU (Scheidgen et 

al., 2023)

GNoME Compu-
tational Y US (Merchant et 

al., 2023)
Alexan-

dria
Compu-
tational Y EU (Schmidt et al., 

2023)

Source: JRC’s own elaboration.

44  https://next-gen.materialsproject.org/.

https://next-gen.materialsproject.org/
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Figure 25. Number of material database entries 
provided in the Materials Project since 2011.

Source: The Materials Project (Jain et al., 2013).

Beyond open-access repositories and generative 
model architectures, several large-scale national 
and international initiatives have emerged to 
establish integrated platforms for data-driven 
materials discovery. In Europe, the DiaDEM project45 
(Digital Discovery platform for Organic Electronic 
Materials) is developing a platform for the design 
of organic semiconductors by connecting virtual 
screening, synthesis planning, and chemical supply 
chains. The initiative also provides a dedicated 
dataset46 with curated molecular structures 
and optoelectronic properties to support digital 
screening workflows. Complementing this effort, 
MaterialDigital,47 a German initiative, aims to 
harmonise digital representations of materials 
by introducing machine-readable standards 
and common ontologies spanning the entire 
materials lifecycle, from production to application. 
The initiative focuses on aligning academic and 
industrial practices to reduce fragmentation and 
foster data interoperability.

At the international level, Japan’s Materials DX 
initiative,48 launched under the national Strategy 
for Strengthening Materials Innovation Capability, 
supports the long-term deployment of data-driven 

45  https://www.diadem-project.eu/. 
46  https://diadem-staging.de/. 
47  https://www.materialdigital.de/. 
48  https://unit.aist.go.jp/mdx/en/. 

approaches through the DxMT programme49. This 
effort seeks to accelerate the development of 
materials with innovative functions, particularly 
in strategic domains such as sustainability and 
carbon neutrality, by integrating accumulated 
scientific knowledge with AI and data science 
methods.

These initiatives represent a strategic effort to 
go beyond datasets, supporting the creation 
of national-scale platforms that integrate 
modelling, data infrastructure, and real-world 
experimentation, thereby reinforcing the role of AI 
in materials innovation.

GenAI models for inverse material discoveryhave 
greatly benefited from the availability of these 
databases. One fundamental aspect that 
distinguishes between models is the choice of 
crystal structure representation. At a higher 
level, representations are categorised into those 
based on coordinates (e.g. (x, y, z) components 
of the (a, b, c) lattice vectors of the unit 
cell), 3D voxels or point clouds, standardised 
Crystallographic Information Files (CIF), or other 
type of representations (e.g. Wyckoff positions). 
In Table 6, a summary of the most relevant 
models for inverse material discovery is provided, 
in chronological order, including the type of 
structure representation used for the input, the 
model architecture and whether the model is 
open source. As can be observed, the most used 
representation is based on coordinates, with some 
early examples using voxels and more recent 
cases using CIF. Regarding model architectures, 
with few exceptions, the evolution has progressed 
from early models based on GANs and VAEs to 
more recent models based on autoregressive 
transformers and diffusion models. Most of the 
models are open source, although there are some 
recent notable exceptions, such as MatterGen 
(developed by Microsoft) (Zeni et al., 2025). 
However, while Table 6 presents ‘open-source’ 
status as a binary attribute, it is important to 
acknowledge that the reality is more nuanced. In 
several cases, including material science research 
but not limited to it, despite this label, critical 

49  https://dxmt.mext.go.jp/en/. 

https://www.diadem-project.eu/
https://diadem-staging.de/
https://www.materialdigital.de/
https://unit.aist.go.jp/mdx/en/
https://dxmt.mext.go.jp/en/
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components (e.g. pre-trained weights, training 
pipelines, fine-tuning protocols or proprietary 
datasets) are withheld (Persaud et al., 2024; 

Van et al., 2025). This partial openness can lead 
to erroneous perceptions of reproducibility and 
accessibility.

Table 6. Summary of generative AI models for inverse material discovery in chronological order, including model 
name, input type, model architecture, open-source availability, country/region of the corresponding author (used as 
proxy for region) and literature reference.

Model Input type Model 
architecture

Open 
source Region Reference

CrystalGAN Coordinates GAN Y EU (Nouira et al., 2019)

Crystal-VAE Voxels VAE Y CA (Hoffmann et al., 2019)

iMatGen Voxels VAE N KR (Noh et al., 2019)

G-SchNet Coordinates Generative- 
SchNet Y EU (Gebauer et al., 2019)

CCCGAN Coordinates GAN N KR (Kim et al., 2020)

ICSG3D Voxels VAE Y UK (Court et al., 2020)

CCDCGAN Voxels GAN N EU (Long et al., 2021)

CubicGAN Coordinates GAN Y US (Zhao et al., 2021)

CDVAE Coordinates VAE + Diffusion Y US (Xie et al., 2021)

FTCP
Coordinates 

and structured 
factors

VAE Y SG (Ren et al., 2022)

xyzTransformer CIF Transformer N CA (Flam-Shepherd and
Aspuru-Guzik, 2023

UniMat
Coordinate 
embedded 

periodic table
Diffusion N US (S. Yang et al., 2023)

GNoME Coordinates GNN Y US (Merchant et al., 2023)

Crystal-LLM Coordinates Transformer Y US (Gruver et al., 2023)

DiffCSP Coordinates Diffusion Y CN (Jiao et al., 2023)

CrysTens Coordinates GAN + Diffusion Y US (Alverson et al., 2024)

CristalFormer Coordinates Transformer N CN (Cao et al., 2024)

WyCryst Wyckoff site 
matrix VAE N SG (R. Zhu et al., 2024)

CrystalLLM CIF Transformer Y UK (Antunes et al., 2024)

MatterGen Coordinates Diffusion N UK (Zeni et al., 2025)

Source: JRC’s own elaboration based on literature contributions, including (Park et al., 2024).

When it comes to the infrastructure needed to 
train these models, it is worth noting that the 
size of these models in terms of the number of 
parameters is relatively moderate, especially 

when compared to the size of state-of-the-art 
GPAI models, such as LLMs. For example, Figure 
26 displays the number of parameters for the 
models with available data. The blue points 
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represent models used for molecular simulation 
and property prediction. The red points represent 
models for crystal discovery, including the 
most advanced ones, such as CrystaLLM and 
MatterGen, with 200M and 46.8M parameters, 
respectively. In comparison, recent open-weight 

‘small’ LLMs, such as Mistral Small 3 with 24B 
parameters, Llama 4 Scout with 17B parameters, 
or larger models like Llama 4 Maverick with 400B 
total parameters (based on Epoch AI’s ‘Data on 
AI Models’27), are between 2 and 4 orders of 
magnitude larger.

Figure 26. Number of parameters of models for ‘materials simulation and property prediction’ (blue points) and 
‘inverse material discovery’ (red points).
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The compute required to train these models is 
proportional to the size of the model (number of 
parameters) and the size of the training dataset 
(number of data points). Some examples of 
training compute in floating-point operations 
(FLOPs) are depicted in Figure 27. The most recent 
models for inverse material design, CrystaLLM 
(large, transformed-based architecture) and 
MatterGen (diffusion-based have been trained 
with a total of 4.6 x 1018 and 2.7 x 1019 FLOPs, 
respectively. In comparison, the aforementioned 
open-weights GPAI models, have been trained 
with much larger amount of compute, such as 
1.15 x 1024 FLOPs for Mistral Small 3, or 4.08 x 
1024 FLOPs for Llama 4 Scout (based on Epoch 
AI’s ‘Data on AI Models’27). Therefore, in terms of 
compute, the difference between the most advance 

models for materials discovery and the state-of-
the-art open-weight GPAI models is approximately 
5-6 orders of magnitude. This is why the current 
landscape of AI Factories in Europe is, for now, 
sufficient to meet the training needs of these 
models in the short to medium term. However, 
compared to state-of-the-art GPAI models, there 
is still significant room for improvement, and 
it is likely that future GenAI models for inverse 
materials design will be trained with much 
larger amounts of compute in the future. This 
increase will likely be driven, at least initially, by 
the availability of more data, both empirical and 
computational, as well as the use of larger-scale 
GenAI model architectures (in terms of the number 
of parameters), following a similar trajectory to 
that seen in the development of LLMs.
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Figure 27. Training compute (FLOPs) for ‘materials simulation and property prediction’ (blue points) and ‘inverse 
materials discovery’ (red points). Note that training compute are proportional to the number of models parameters 
and data points used for training.
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Alongside data volume, the quality and 
consistency of materials datasets are critical 
for developing reliable AI models. Issues like 
inconsistent labels, incomplete metadata, and 
varying simulation parameters can result in 
misleading predictions and lower generalisability 
(Himanen et al., 2019). Many existing datasets 
also lack proper documentation or benchmarking 
protocols, especially when aggregating from 
diverse sources (Van et al., 2025). Improving data 
quality is essential for robust and reproducible 
materials discovery, and initiatives like the 
above-mentioned NOMAD are already advancing 
this agenda. Once a certain level of saturation 
is reached in terms of data and model scale, 
algorithmic improvements and data quality will 
play a crucial role.

3 .2 .2 SAFE AND TRUST WORTHY AI , 
ETHIC AL CONSIDER ATIONS AND 
CHALLENGES

The promises of using inverse material design 
via generative AI to accelerate the discovery 
of new materials, their properties, and the 
development of potential new products, patents, 
and innovation activities are very enticing. While 
AI models operate in the virtual domain to 
predict candidate materials with specific target 
properties, their impact is increasingly amplified 
when associated with self-driving laboratories, i.e. 
automated experimental platforms that integrate 
robotics, sensing, and AI to perform synthesis and 
characterisation with minimal human intervention. 
These two components are conceptually distinct 
yet operationally complementary: GenAI proposes 
hypotheses; self-driving labs test them in closed-
loop cycles. Their integration defines a new 
paradigm of autonomous materials discovery. 
In fact, the number of initiatives focusing on 
intelligent, automated, or self-driving laboratories 
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has grown significantly in recent years.50 However, 
on several occasions, the expectations created 
by the narratives of some scientific works are 
perhaps too high and create distortions in both 
the scientific community and the general public, 
which may ultimately also impact policy decisions. 
Both traditional knowledge-led computational 
materials design and inverse material designs 
approaches are sometimes criticised for making 
predictions that are obvious-trivial variants of 
known systems-, or even erroneous-compounds 
that are unstable or fail to exhibit the predicted 
structure/properties (Park et al., 2024).

One example is the case of the A-lab, an 
autonomous laboratory for AI-driven synthesis 
of targeted compounds published in Nature 
(Szymanski et al., 2023), which, just a few days 
after its publication, and following some criticism 
regarding the quality of the experimental 
analysis, had to publish a response51 with 
additional data to supplement the original paper, 
providing evidence that the targeted compounds 
were indeed successfully synthesised. They 
declared that the A-Lab is not intended to replace 
the materials discovery process with AI agents. 
Rather, the A-Lab is meant to address a current 
fundamental limitation in materials science: the 
number of predicted materials vastly exceeds the 
capabilities of humans to test experimentally. The 
focus of our efforts is on the early, exploratory 
stages of materials discovery: attempting 
synthesis and gathering data. A human in the loop 
is still required for the latter stages of discovery.

Another case that drew criticism was the 
GNoME tool from Google DeepMind (Merchant 
et al., 2023), which was announced as a key 
breakthrough for the discovery of up to 2.2 million 
new materials. A subsequent study (Cheetham 
and Seshadri, 2024), however, found scant 
evidence for compounds that fulfilled the trifecta 
of novelty, credibility, and utility, concluding that 
while the methods adopted in this work appear 

50  https://github.com/AccelerationConsortium/awesome-
self-driving-labs. 
51  https://www.linkedin.com/pulse/regarding-our-recent-a-
lab-article-gerbrand-ceder-0sz6c.

to hold promise, there is clearly a great need 
to incorporate domain expertise in materials 
synthesis and crystallography.

In this context of high expectations, there have 
even been extreme cases of possible scientific 
and academic fraud, such as the recent study 
on the impact of AI on accelerating materials 
discovery, patents, and product prototypes (Toner-
Rodgers, 2024). The research, presented by a PhD 
student at MIT, had a significant scientific and 
social impact, and was covered by some of the 
most prestigious newspapers and news sections 
of the most relevant scientific journals (The BS 
Detector, 2025). Unfortunately, MIT recently 
stated that, after an internal and confidential 
review, they have no confidence in the veracity 
of the research contained in the paper (MIT 
Economics, 2025). The MIT formally requested 
arXiv and The Quarterly Journal of Economics to 
withdraw the paper.

These examples highlight the importance of AI 
in science research, particularly in the context 
of materials discovery, being conducted by 
multidisciplinary teams that incorporate specific 
domain expertise. Additionally, full autonomy 
does not have to be a goal in itself. GenAI models 
can still play a valuable role in providing novel 
suggestions while keeping materials scientists 
and complementary computational search 
strategies ‘in the loop’. These elements, some of 
which are key to the EU’s approach to Trustworthy 
AI, are essential to consider in the context of any 
AI in science strategy that aims to maximise the 
benefits of AI while minimising unintended and 
harmful side effects. These potential negative 
effects can also be minimised by the availability 
of educational resources, tools, standards, and 
good practices that can improve expertise and 
provide the necessary skills to implement AI in 
various scientific domains.

3 .2 .3 SKILLS AND INNOVATION

In addition to the general interdisciplinary 
context that AI in science approaches entails, 
where domain-specific expertise and skills (in 

https://github.com/AccelerationConsortium/awesome-self-driving-labs
https://github.com/AccelerationConsortium/awesome-self-driving-labs
https://www.linkedin.com/pulse/regarding-our-recent-a-lab-article-gerbrand-ceder-0sz6c
https://www.linkedin.com/pulse/regarding-our-recent-a-lab-article-gerbrand-ceder-0sz6c
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this case, materials science) must be combined 
with AI-specific profiles typical of the engineering 
and computer science fields (Sun et al., 2022), 
it is worth highlighting that in the context of AI 
in materials science, there are several initiatives 
and resources (Reeve et al., 2019) that serve 
as good examples for other research domains, 
including datasets, simulation tools, tutorials, 
learning modules, etc. For example, there are 
a considerable number of initiatives providing 
open-source tools, tutorials and notebooks on 
various methods for materials design such as 
JARVIS-Tools Notebooks (Choudhary et al., 2020), 
Materials Simulation Toolkit for Machine Learning 
(MAST-ML) (Jacobs et al., 2020), Machine Learning 
Lab Module (Afflerbach et al., 2020), or REsource 
for Materials Informatics (REMI) (NIST, 2025).

Other more structured initiatives include the 
NOMAD Lab (Scheidgen et al., 2023), which, in 
addition to serving as a database of resources for 
training generative models, provides other types 
of resources such as AI toolkits, an encyclopaedia, 
tutorials, and documentation. Another relevant 
initiative is Materials Cloud (Talirz et al., 2020), 
which is presented as an approach to enable the 
seamless sharing and dissemination of resources 
in computational materials science. This platform 
offers a range of tools, including educational, 
research, and archiving tools on one hand, and 
simulation software and services on the other, as 
well as curated and raw data. All these initiatives 
are excellent examples of what good practices 
might look like in the context of improving 
expertise and providing the skills needed to 
implement AI in various scientific domains.

In the realm of innovation, while some highly 
significant initiatives in the field of materials 
science have emerged from major tech 
companies, such as Meta with OMat24 (Barroso-
Luque et al., 2024), Google DeepMind with the 
GNoME Project (Merchant et al., 2023)52, or more 

52  Despite the aforementioned recent critique (Cheetham 
and Seshadri, 2024) of the hyperbolic claims made by 
Google DeepMind regarding the discovery of 2.2 million 
structures (an order-of-magnitude expansion in stable 
materials known to humanity), this work remains one of the 
most impactful in the materials science domain.

recently Microsoft with MatterGen (Zeni et al., 
2025), the ecosystem of startups specifically 
focused on leveraging advanced AI tools to 
enhance materials discovery is nonetheless 
substantial.53 The innovative nature of research 
activities in the materials science domain is 
strengthened by several aspects that arise 
from the integration of AI, which, as previously 
mentioned, not only accelerates the materials 
discovery process but also makes it much 
more efficient and sustainable, and focused on 
addressing very important real-world problems.

3 .2 .4 RESEARCH COMMUNIT Y

The use of AI for materials discovery has emerged 
as a rapidly expanding interdisciplinary field at 
the intersection of materials science, physics, 
chemistry and ML. This convergence is driven 
by both technological advancements and the 
growing recognition of AI’s potential to accelerate 
the discovery of functional materials for energy, 
electronics, healthcare, and sustainability. The 
field has benefited from the interaction between 
domain scientists, data infrastructure projects, 
and researchers, often supported through publicly 
funded initiatives and collaborative platforms. 
To illustrate the evolution and structure of this 
research community, 7,769 publications indexed 
in Scopus between January 2020 and May 2025 
(retrieved following the methodology described in 
Section 1.3) are analysed by filtering for articles, 
reviews and conference papers considering the 
keywords described in Table 1. This analysis offers 
a quantitative perspective on the geographical 
distribution of scientific output (Figure 28), the 
diversity of contributing institutions (Figure 29 
and Figure 30), and the degree of collaboration 
across countries and sectors (Figure 31).

In terms of geographical distribution (Figure 28), 
the largest number of publications within the 
defined scope originated from China (3,342; 35.7%), 
followed by the US (1,769; 18.9%), the EU (1,098; 
11.7%), South Korea (432; 4.6%), the UK (385; 
4.1%), India (250; 2.7%), and Japan (241; 2.6%).

53  ‘42 Best Startups in Europe to watch in 2025’. https://
www.seedtable.com/best-startups-in-europe. 

https://www.seedtable.com/best-startups-in-europe
https://www.seedtable.com/best-startups-in-europe
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Figure 28. Global geographical distributions of scientific literature contributions related to ‘material discovery’ topics, 
indexed by Scopus between Jan. 2020 and May 2025.
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Source: JRC’s own elaboration based on divinAI methodology.

The publications were produced by a variety of organisations, with universities being the main 
contributors, followed by research institutions and private companies (Figure 29).

Figure 29. Distribution of ‘material discovery’ literature contributions by type of establishments and geographical 
area. Considered contributions are indexed by Scopus between Jan. 2020 and May 2025.
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In the EU, most research output on AI-driven 
materials discovery originates from academic 
institutions, followed by research facilities, private 
companies, and, to a lesser extent, non-profit 
organisations, government bodies, and healthcare 
institutions (Figure 30). This distribution reflects 

the continued leadership of academia, supported 
by increasing participation from other sectors. The 
availability of open datasets, pre-trained models, 
and shared platforms has made it easier for a 
wide range of institutions to contribute, including 
those with more limited computational resources.
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Figure 30. Amount of ‘material discovery’ literature contributions across EU countries by type of establishments 
over the years from Jan. 2020 to May 2025. Considered contributions are indexed by Scopus.
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Changing perspective, collaboration networks are 
also essential to the research landscape. Co-
authorship analysis of the selected publications 
reveal that the most prominent cross-regional 
collaborations occur between the EU and the 
US, as well as between the US and China (Figure 
31(a)). At a more granular level, collaboration 
patterns within the EU show that the strongest 

links are between educational institutions and 
research facilities, followed by collaborations 
between academic institutions and companies 
(Figure 31(b)). Less frequent, but still present, 
are joint publications involving universities and 
government bodies, healthcare institutions, or 
non-profit organisations.

Figure 31. Collaboration patterns in ‘material discovery’ field. Amount of co-authored literature contributions by (a) 
geographical area and (b) type of establishments (only EU). Considered contributions are indexed by Scopus between 
Jan. 2020 and May 2025.
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Material discovery: Take-home messages

	– The field of material discovery is being revolutionised by AI, moving from traditional trial-and-
error to novel paradigms, such as inverse material design, which generates novel compounds 
based on desired properties.

	– This progress is powered by a variety of generative AI architectures and a robust ecosystem 
of open computational material databases, which facilitate high-throughput screening and 
accelerate innovation in strategic areas like energy and sustainability.

	– Despite the significant potential, this research field faces challenges related to inflated 
expectations, and a critical need for domain expertise to validate AI-generated hypotheses. The 
computational demands, while moderate compared to LLMs, still require significant investment 
in research infrastructure.

3.3 Ancient site discovery and virtual 
restoration of inscriptions
Archaeology is the scientific study of the material 
remains of past human life and activities. It 
involves studying ancient artifacts, structures, and 
landscapes to understand the historical significance 
of human societies, their formation, and cultural 
diversity across time. Its mission is to understand 
the lives, cultures and behaviours of ancient 
civilisations and societies that existed long before 
written records (Jorge, 2024). Through physical 
remnants, the development of human civilisation 
and the evolution of cultures over time can be 
uncovered. European archaeology focuses on the 
rich and varied heritage of Europe, highlighting 
both the commonalities and diverse elements that 
have shaped the continent’s history. By uncovering 
and interpreting materials from different eras, 
archaeologists contribute to social cohesion by 
fostering an understanding of our shared, collective 
past while also celebrating the distinct cultural 
identities that exist. In recent years, AI has emerged 
as a powerful tool, offering new methods for 
analysing archaeological data and enhancing the 
ability to uncover and interpret historical insights.

The study of inscriptions on long-lasting materials, 
such as stone, metal or pottery, is crucial for 
reconstructing historical narratives (Robert, 1961). 
Through the field of epigraphy, researchers can 
uncover precious information about ancient 
languages, cultures, and societies through the 
deciphering and interpretation of these texts 

(Bodel, 2012). The precision and depth of historical 
understanding greatly rely on the efforts of 
epigraphers, who traditionally use meticulous 
manual methods to examine and restore 
inscriptions. European epigraphy holds significant 
importance due to its extensive record of diverse 
inscriptions, ranging from ancient Roman and Greek 
texts to medieval carvings (Millar, 1983). These 
inscriptions provide a window into cultural, political, 
and social dynamics, offering critical insights into 
the rich and varied history of the continent. The 
study of the artefacts, from objects to structures, 
is of an inherently interdisciplinary nature, which 
enables researchers in the field to integrate 
tools and methods from chemistry, physics, 
and biology in order to extend their analytical 
possibilities far beyond those of traditional 
approaches. When combined with AI, these cross-
disciplinary techniques have significantly expanded 
the capacity of archaeology for discovery and 
interpretation. Given the breadth of areas in which 
AI is applied in the diverse field of archaeology, 
two focus areas were chosen in order to showcase 
different techniques: site discovery and virtual 
restoration of inscriptions. Examples of how AI 
is being used in these areas are provided below.

By combining advanced techniques in epigraphy 
with site discovery efforts, researchers can 
develop a more comprehensive understanding of 
ancient civilisations, accelerating the discovery 
process and uncovering new connections between 
archaeological findings. This integration not 
only enhances the accuracy and efficiency of 
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archaeological excavations but also contributes 
to the preservation and interpretation of cultural 
heritage on a broader scale.

Site discovery is a key area influenced by AI 
through cutting edge digital sensor data, such as 
3D site scans, satellite imagery and environmental 
datasets. This wealth of data, combined with AI 
algorithms, enables archaeologists to identify 
previously unknown sites, classify artefacts and 
reconstruct patterns of ancient human behaviour 
(Gattiglia, 2025). In Copán, Honduras, an analysis 
of airborne Light Detection and Ranging (LiDAR) 
data using a DL model applied to 3D point clouds 
was successful in classifying Maya archaeological 
sites (Richards-Rissetto et al., 2021). Also, in Nazca 
Desert, Peru, low-flying drones captured high-
resolution images of an area spanning 600 km2 
of desert. More than 1,300 potential candidates of 
Nazca culture sites were identified by DL models 
trained to detect figurative geoglyphs. Subsequent 
ground verification confirmed 303 novel geoglyphs, 
almost doubling the number of figures associated 
with the Nazca culture (Sakai et al., 2024). Lim and 
Qiu (2023) developed µ-Net, a ConvNeXt-based 
U-Net architecture that converts muon scattering 
data into high-resolution three-dimensional density 
maps, facilitating the non-invasive investigation 
of ancient structures. Similarly, Benhammou et al. 
(2025) applied AI-enhanced muon tomography 

to detect and map subterranean features 
beneath the City of David heritage site. In forensic 
archaeometry, Siozos et al. (2021) integrated 
Laser-Induced Breakdown Spectroscopy (LIBS) 
with NNs to re-associate commingled human bone 
fragments in complex burial contexts, achieving 
high classification accuracy and contributing 
to more efficient reconstruction of fragmented 
remains. The above examples show that using 
AI algorithms to analyse aerial and satellite data 
can increase the size of archaeological records 
far beyond what can be achieved through ground 
surveys alone. Together, these studies exemplify 
how AI-enabled methods, ranging from ML for 
peptide analysis, Convolutional Neural Networks 
(CNNs) for spectroscopic imaging, DL for muon 
tomography, to NN classification in LIBS, are 
expanding the interpretative capabilities of 
archaeology beyond the traditional methodologies.

Virtual restoration of inscriptions includes 
the recovery of ancient texts, documented in 
inscriptions, allowing the present generations to 
gain insights on the evolution of writing but also the 
narratives of those cultures. However, due to age 
or external factors, ancient texts can be subjects of 
degradation and partial loss of information, which 
eventually leads to a loss of context for fields such as 
history, archaeology and literature.

Figure 32. Restoration of a damaged inscription, recording a decree from 485/4 BCE concerning the Acropolis of 
Athens (IG I3 4B, CC BY-SA 3.0, WikiMedia).

Source: Assael et al. (2022)

A survey published in the last few years 
(Sommerschield et al., 2023) on the prevalence 
of the uptake of ML in the study of ancient 
languages, as shown in Figure 33, found that there 

has been a significant increase in the interest 
in tackling tasks in this space, ranging from the 
determination of authorship to the restoration of a 
damaged or partially incomplete inscription.
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Figure 33. Amount of literature contributions related to ML-based studies into ancient languages domain.
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Source: JRC’s own elaboration based on data from literature contribution (Sommerschield et al., 2023).

Focusing on inscription restoration, the first ancient 
text missing character restoration model was Pythia. 
Its task was to predict characters from a partial text 
input (Assael et al., 2022). On a character level, the 
error rate that was reported for Pythia was 30.1%, 
while human epigraphists were assigned a 57.3% 
error rate. Pythia was the result of the collaboration 
between researchers from DeepMind and the 
University of Oxford (Assael et al., 2019). Pythia 
was made available as a Python notebook interface 
and an offline version, available on GitHub. Another 
example of a model tackling the task of restoration 
of ancient Greek inscriptions was Ithaca (Assael et 
al., 2022). Crucially, Ithaca, using a transformer-
based architecture, can be deployed to enhance 
and elevate the work of historians. When historians 
were assigned with the task of text restoration, their 
accuracy rose from 25% to 72% when not using 
and using Ithaca respectively. In terms of the other 
tasks Ithaca was trained on, namely geographic 
and chronological determination, on the former its 
accuracy was demonstrated to be 71% and on the 
latter, it managed to only deviate by 30 years from 
the ground-truth-assigned date (Assael et al., 2022). 
Ithaca was also made available as an interactive 
Python notebook and on GitHub.

In Asia, an example of DL to decode ancient 
Chinese inscriptions was proposed by Wang 
et al. (2025). These inscriptions could contain 

information on the Chinese economy, politics, 
culture, and way of life. The team built and trained 
a NN with a twofold objective: increasing the 
efficiency of restoration tasks and promoting the 
need for protection of items of cultural heritage. 
Their pipeline used a combination of Natural 
Language Processing (NLP) and Computer Vision 
(CV) and was shown to perform better than 
pipelines deploying only NLP or only CV (Z. Wang 
et al., 2025). Another instance of an ancient 
script being the object of an investigation into the 
deciphering of ancient text has been a study on 
artefacts from the Indus Valley Civilisation (IVC), 
Harappan Civilisation, dating around 2600 BCE to 
1900 BCE. Dixit et al. (2025) proposed a pipeline 
which deploys three DL models to process and 
archive Indus Script and extract Motif information.

By uncovering information about the human past, 
societal ways of life and perceptions of the world 
can be understood, and this unearthed evidence is a 
testament to our historic continuity, either through 
the discovery of sites or through the interpretation 
of ancient written languages. The localisation 
of sites is key in ensuring their conservation, 
protection and restoration. Teams are already 
using AI to leverage the volume of information 
that resulted from the adoption of satellite and 
LiDAR technologies. Similarly, AI has been deployed 
to augment the task of restoring and attributing 
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inscriptions across a breadth of ancient languages. 
So, it is clear that AI has and will shape how 
archaeological evidence is not only found but also 
incorporated to the existing body of knowledge.

3 .3 .1 DATA , MODELS AND 
INFR ASTRUC TURE
In archaeology, AI is revolutionising research 
through advanced models, robust infrastructures, 

and comprehensive databases. AI technologies 
empower the analysis of virtual inscriptions, 
enhancing the accuracy and preservation of 
ancient texts. Additionally, AI-driven site detection 
uncovers potential archaeological sites, optimising  
exploration efforts. These advancements are 
supported by dynamic databases that store 
and integrate vast archaeological data, offering 
deeper insights into past societies.

Table 7. Collection of datasets related to the fields of site detection and inscription restoration.

Field Dataset Open 
source Region Reference

Site detection

Sentinel Y EU Copernicus Sentinel Data54 

ASTER GDEM Y US NASA’s Earth Science Data and
Information System (ESDIS)55 

Landsat-8 Y US NASA/USGS Landsat Science56 

OpenTopography Y US (Krishnan et al., 2011)
EpHEMERA Y EU EpHEMERA Project57 

Odyssey Spatial Data Infrastructure (SDI) Y UK (Sá et al., 2024)
OpenHistoryMap Y EU (Bernardoni et al., 2017)
ArchaeoSTOR Map Y US (Matsui et al., 2012)

Inscription 
restoration

PHI Y US Packard Humanities Institute (PHI)58 

Chinese Inscription Rubbing Image (CIRI) Y US (S. Zhu et al., 2024)
Epigraphic Database Roma (EDR) Y EU EAGLE’s EDR Project59 

Asia Inscriptions Database Y UK Asia Inscriptions Online (AIO)60 

Online Corpus of the Inscriptions from Ancient 
North Arabia (OCIANA) Y UK Khalili Research Centre’s OCIANA Project61 

Epigraphic Database of Ancient Asia Minor 
(EDAK62) Y EU University of Hamburg Open-Access

Portal’s EDAK Database63 

Other

Archaeology Data Service (ADS) Y UK ADS Organisation64 

The Digital Archaeological Record (tDAR) Y US Arizona State University’s Centre for
Digital Antiquity Digital Repository65 

Data Station Archaeology Y EU Dutch national centre of expertise and
repository for research data (DANS)66 

Source: JRC’s own elaboration.

54  https://dataspace.copernicus.eu/data-collections/copernicus-sentinel-data/. 
55  https://www.earthdata.nasa.gov/about/esdis/. 
56  https://landsat.gsfc.nasa.gov/. 
57  https://ephemera.cyi.ac.cy/about/. 
58  https://packhum.org/. 
59  http://www.edr-edr.it/. 
60  https://siddham.network/about/. 
61  https://krc.web.ox.ac.uk/article/ociana/. 
62  Acronym from the original German resource name ‘Epigraphische Datenbank zum Antiken Kleinasien’.
63  https://www.oa.uni-hamburg.de/datenbanken/epigraphik.html/. 
64  https://archaeologydataservice.ac.uk/. 
65  https://www.tdar.org/. 
66  The Dutch national centre of expertise and repository for research data is called DANS, which stands for ‘Data Archiving and 
Networked Services’. The dataset is available here: https://dans.knaw.nl/en/archaeology/. 

https://dataspace.copernicus.eu/data-collections/copernicus-sentinel-data/
https://www.earthdata.nasa.gov/about/esdis/
https://landsat.gsfc.nasa.gov/
https://ephemera.cyi.ac.cy/about/
https://packhum.org/
http://www.edr-edr.it/
https://siddham.network/about/
https://krc.web.ox.ac.uk/article/ociana/
https://www.oa.uni-hamburg.de/datenbanken/epigraphik.html/
https://archaeologydataservice.ac.uk/
https://www.tdar.org/
https://dans.knaw.nl/en/archaeology/
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Table 7 provides a summary of some datasets 
used in the archaeological field. It demonstrates 
the diverse range of data sources used, such as 
textual corpora, satellite imagery and LiDAR data, 
and the different geographical characteristics 
of the data sources. As pointed out by Gattiglia 
(2025), training data in this field seems to be 
limited as well as standards for data combination, 
which contrast with previous use cases in the hard 
sciences where researchers work and produce 
substantial volumes of data. The same author also 
argues that this is due to the existing ecosystem 
of small research teams and existing barriers to 
access such as copyright or poor metadata. In 
order to tackle the fragmentation of data, the 
EU funded the Integrating Activity Advanced 
Research Infrastructure for Archaeological Dataset 
Networking in Europe (ARIADNE).67 Building on 
this, the ARIADNE project still supports and has 
expanded its mission to make archaeological data 
and services accessible to researchers. The ARIADNE 
Portal contains the data registry and a service which 
are employed to manage the datasets, collections, 
vocabularies, metadata schemas and mappings. As 
part of its services, the portal includes the option 
to access compute infrastructure. Through the 

67  The Dutch national centre of expertise and repository 
for research data is called DANS, which stands for ‘Data 
Archiving and Networked Services’. The dataset is available 
here: https://dans.knaw.nl/en/archaeology/. 

ARIADNE Plus Lab,68 the research community can 
process, visualise and analyse data from both the 
ARIADNE registry as well as their own. Furthermore, 
by accessing ARIADNE, landscape data can also 
be generated and processed, using open-source 
toolkits. These terrain datasets are designed for 
visualisation in real-time and web streaming.69 
Moreover, the ARIADNE dataset is comprised of 
data provided by researchers and organisations who 
wish to make datasets available. This project has 
more than 25 members70 and the portal includes as 
of July 2025 more than 4 million records, covering 
a period from the earliest Hominids to the Cold 
War and spanned four continents. An example 
of infrastructure which supports the reusability 
of data is DANS,71 the collaboration between the 
Royal Netherlands Academy of Arts and Sciences 
and Dutch Research Council, which functions as 
the national centre of expertise of the Netherlands 
and repository for research data. It facilitates 
researchers in making their data available for reuse, 
promoting the initiation of new research endeavours 
and enhancing the verifiability and reproducibility 
of published studies, with a collection exceeding 
300,000 datasets.

68  https://ariadne.d4science.org/web/ariadneplus_lab/. 
69  https://seth.itabc.cnr.it/services/landscape/. 
70  https://www.ariadne-research-infrastructure.eu/partners/. 
71  https://dans.knaw.nl/en/. 

Table 8. A collection of examples of architectures reported to have been deployed in the fields of site detection and 
inscription restoration, along with their respective application area.

Field AI Model and/or architecture Application Open 
source Reference

Site 
detection

YOLOv3-based Multi-Scale Relief 
Model (MSRM) + Random Forest (RF)

Burial mound detection 
(Galicia, Spain) Y (Berganzo-Besga et al., 

2021)
RF-based model Mound mapping (Cholistan desert, Pakistan) Y (Orengo et al., 2020)
Random Forest Burial mound detection (Carnac, France) Partial (Guyot et al., 2018)

Vision Transformer Burial mound detection
(Alto Minho, Portugal) N (Canedo et al., 2024)

Support Vector Machines (SVMs)

Stone-walled structures detection
(Mpumalanga, South Africa) Partial (Mohlehli et al., 2023)

Structural remains detection
(Chun Castle, UK) Partial (Kadhim and Abed, 

2021)

CarcassonNet (CNN) Hollow roads detection (the Netherlands) N
(Verschoof-van der 
Vaart and Landauer, 
2021)

U-Net (DL) Ancient site detection
(southern Mesopotamia) Y (Casini et al., 2023)

ChatGPT-3.5-based experiments 
(prompt engineering) Roman oil lamp typological investigation N (Lapp and Lapp, 2024)

https://dans.knaw.nl/en/archaeology/
https://ariadne.d4science.org/web/ariadneplus_lab/
https://seth.itabc.cnr.it/services/landscape/
https://www.ariadne-research-infrastructure.eu/partners/
https://dans.knaw.nl/en/
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Field AI Model and/or architecture Application Open 
source Reference

Inscription 
restoration

Pythia (sequence-to-sequence + 
LSTM) Ancient Greek text decoding Y (Assael et al., 2019)

Ithaca (Transformer) Ancient Greek text decoding and 
chronological and geographical attribution Y (Assael et al., 2022)

CIRoBERTa (NLP) + CISwin (CV) Chinese character restoration N/A (Z. Wang et al., 2025)
Ancient Script Recognition Network 
(ASR-net) + Motif Identification 
Network (MI-net)

IVC script and motifs extraction and 
identification Y (Dixit et al., 2025)

Source: JRC’s own elaboration.

Table 8 provides a summary of a set of 
selected AI models and application tasks used 
in archaeological research. It demonstrates 
the variety of AI techniques employed, ranging 
from traditional ML algorithms to DL and LLMs, 
learning from diverse data modalities, including 
text, images or LiDAR data. Especially in the case 
of voluminous satellite or LiDAR data, dedicated 
infrastructure is necessary to host and visualise 
it, making it accessible to researchers. Along 
this axis, McCoy (2017) discussed the volume of 
geospatial data captured with satellite imagery 
and LiDAR can be challenging to handle. An open-
access, 3D interactive online geo-database of 
architectural and archaeological heritage sites 
located in the Southeastern Mediterranean basin 
is the Online 3D Database System for Endangered 
architectural and archaeological Heritage in the 
south Eastern MEditerRAnean area (EpHEMERA), 
developed by the Cyprus Institute’s Science and 
Technology in Archaeology and Culture Research 
Centre (STARC). This service allows users to 
visualise the structures, query the database 
and access geometric and morphological 
information. The database hosts structures from 
archaeological excavations, ancient buildings, 
archaeological areas. In order to support domain 
experts in handling Geospatial data, like LiDAR, 
a platform which integrated this data with a 
processing environment was created, the Odyssey 
Spatial Data Infrastructure (SDI) (Sá et al., 
2024). The platform focuses on data concerning 
archaeological sites and offers functionalities to 
annotate, validate and visualise the spatial data. 
Through this work, it is possible to process remote 
sensing data and build ML algorithms. Other 
examples that fall under platforms that make 
archaeological geodata available on the web are 

OpenHistoryMap (Bernardoni et al., 2017) and 
ArchaeoSTOR map (Matsui et al., 2012), which 
is a testament to the need for such platforms in 
order to have readily-accessible tools and ways to 
visualise such high volume of information.

Albeit different tasks, both site detection and 
inscription restoration rely on the availability 
of extensive datasets and appropriate 
infrastructure for the processing of this data and 
the augmentation of the work of the research 
community with the deployment of AI models. In 
turn, teams investigating the potential of such 
models have proposed a variety of architectures, 
ranging from machine learning to Deep Neural 
Networks (DNNs). An examination of an array 
of examples across the two tasks revealed the 
common needs that emerge, in terms of compute 
and data storage infrastructure, and the role that 
platforms that allow the processing of complex, 
fragmented, multi-source and multi-modal 
data can play in making AI experimentation and 
adoption more accessible.

3 .2 .2 SAFE AND TRUST WORTHY AI , 
ETHIC AL CONSIDER ATIONS AND 
CHALLENGES

Together, the presented studies exemplify 
how AI-enabled methods are expanding the 
interpretative capabilities of archaeology beyond 
the traditional methodologies. The integration of 
AI in archaeology, supported by the EU’s Horizon 
Europe program, has the potential to revolutionise 
the field. However, as AI-driven discoveries 
become more prevalent, it is essential to 
prioritise ethical considerations, such as cultural 
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sensitivity, heritage protection and community 
involvement (UNESCO, 2022). Through those 
recommendations, UNESCO urged member states 
to incorporate AI systems, where appropriate, 
in the preservation, enrichment, understanding, 
promotion, management and accessibility of 
tangible, documentary and intangible cultural 
heritage (UNESCO, 2022). At the same time, 
Horizon Europe emphasises the importance of 
responsible and human-centric development 
and use of AI in science, which can be applied 
to various sectors, including cultural heritage 
(European Commission: Directorate General for 
Research and Innovation, 2024). In this context, 
several projects have been funded by Horizon 
Europe program to ensure security and protection 
of cultural heritage, such as RITHMS72 (Research, 
Intelligence and Technology for Heritage and 
Market Security), ANCHISE73 (Applying New 
solutions for Cultural Heritage protection by 
Innovative, Scientific, social and economic 
Engagement), ENIGMA74 (Endorsing safeguarding, 
protection, and provenance management 
of cultural heritage) and AURORA75 (Artwork 
Unique RecognitiOn and tRacking through 
chemicAl encoded data, miniaturised devices and 
blockchain alliance).

Regarding data, Gattiglia (2025) discusses the 
human interpretation and action involved in the 
so-called ‘travelling of data’, i.e. from primary 
data (unprocessed data coming from the direct 
observation of the archaeological evidence) to 
secondary data (processed data made available 
for re-use) and to tertiary data (interpreted 
data derived from other researcher’s analysis 
and reuse). In this respect, and in addition to 
concerns pertaining to the ‘reductionist approach’ 
of creating AI-ready data, the same contribution 
mentions that the creation of datasets is neither 
a neutral nor a purely technical process but 
incorporates political, cultural and social choices. 
These considerations are particularly relevant in 
disciplines with strong cultural grounds. The CARE 

72  https://rithms.eu/. 
73  https://www.anchise.eu/. 
74  https://eu-enigma.eu/. 
75  https://www.aurora-euproject.eu/. 

and FAIR principles serve as vital frameworks for 
guiding the ethical and efficient management of 
data, addressing both cultural sensitivities and 
technical standards (Carroll et al., 2021):

	– The FAIR (Findable, Accessible, Interoperable 
and Reusable) principles are a set of 
guidelines designed to improve the 
management and sharing of data. These 
criteria aim to enhance data transparency 
and usability, making it easier for 
researchers and organisations to access, 
integrate and apply data across various 
fields and disciplines (Wilkinson et al., 
2016). By adhering to FAIR, data are 
effectively managed and shared, promoting 
a more open and collaborative scientific 
environment.

	– The CARE (Collective benefit, Authority 
to control, Responsibility and Ethics) 
principles for Indigenous data governance 
ensure that Indigenous data are managed 
respectfully, aligning with Indigenous rights 
and perspectives (Carroll et al., 2020). 
By adopting these guidelines, institutions 
and researchers can foster respectful and 
equitable partnerships with Indigenous 
communities.

As a result, despite recent advances in AI uptake 
in this field, broader integration of AI into 
archaeology remains limited. Bellat et al. (2025) 
reviewed ML studies in archaeology published 
between 1997 and 2022 (excluding LLMs) and 
found that the field is dominated by supervised 
classification models, particularly artificial NNs 
and ensemble learning techniques, which together 
account for nearly two-thirds of applications. 
The most common use cases involve automatic 
structure detection and artefact classification, 
while more interpretive applications such as 
taphonomic analysis or predictive modelling 
remain rare. Moreover, the authors conclude 
that a major limitation lies in the narrow focus 
of many ML applications. Rather than advancing 
theory-driven interpretation, most studies 
concentrate on data processing tasks, revealing 

https://rithms.eu/
https://www.anchise.eu/
https://eu-enigma.eu/
https://www.aurora-euproject.eu/
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a persistent gap between computational AI 
methods and archaeological thinking. Bridging 
this gap is essential to fully integrate AI into 
interpretive archaeological frameworks.

Further challenges in this domain have been 
identified regarding the adoption of AI and the 
connected concept of trustworthy AI (Gattiglia, 
2025). About the former, concerns mainly 
relate to data, in particular their availability, 
fragmentation and large volume, which introduce 
complications when attempting to combine sources 
of information. Moreover, there is an inherent 
complexity in the artefacts and sites themselves 
due to their patterns and the influence of external 
factors such as human actions and natural 
processes. Overcoming biases in the dataset and 
assigning chronological and geographical attributes 
also hinder the data processing process. Concerning 
the latter challenge about AI in archaeology, 
transparency constitutes a crucial ethical aspect. A 
comprehensive understanding of data distortions 
and the operational principles of AI algorithms is 
essential for archaeologists to establish trust in 
a system’s outputs and integrate the results into 
their research studies. The application of AI models 
in the interpretation of archaeological findings 
underscores the importance of explainability 
and transparency, particularly with regard to 
potential biases inherent in the underlying data. 
Failure to address these concerns may result in 
the perpetuation of biases and the solidification 
of flawed interpretations as historical facts, 
thereby undermining efforts to redefine the field 
and challenge existing power dynamics. Notably, 
a recent study (Montgomery and Fryer, 2023) 
has sought to critically examine and challenge 
dominant power structures in archaeology, 
with a specific focus on collaborative research 
methodologies informed by decolonisation and 
Black feminist perspectives.

3 .3 .3 SKILLS AND INNOVATION

Although the use of AI is driven by the analysis of 
different data sources and time scales, they all 
rely on integrating qualitative and quantitative 
methods. Archaeology, in particular, exemplifies 

the scientific value of interdisciplinary synthesis. 
According to Gattiglia (2025), the successful uptake 
of AI in archaeology requires interdisciplinarity 
collaboration between computer scientists and 
archaeologists to bridge the knowledge gap 
and develop robust tools and methodologies. As 
discussed, there are specific web servers dedicated 
to improving the accessibility and processing of 
archaeological big data. Along with this, the ability 
to understand the fundamentals of AI models 
and be in a position of using their capabilities 
is becoming of increasing importance. Yet, at 
the same time, the cultivation of a high level of 
scientific domain expertise is critical. Thus, the 
‘archaeologist of tomorrow’ has a strong scientific 
knowledge, while at the same time can navigate 
tools that can accelerate their workflow, like web 
servers, databases and AI models. Representative 
studies suggest how the adoption of an AI model 
enhances the work of a scientist in inscription 
attribution (Assael et al., 2022). This combination 
of disciplines is not novel in archaeology, since 
it has long constituted a convergence point of 
scientists with backgrounds in physics, chemistry, 
biology, computer science and the humanities to 
reconstruct the past from incomplete and diverse 
evidence. With the accelerating increase in the 
production of data and types of data that are able 
to be captured, the ability for efficient archival 
search remains fundamental and relates to both 
the ability to retrieve information from physical 
and digital sources.

A demonstration of how vast the shift is in regard 
to skills for a future archaeologist is the breadth of 
innovations that have already been implemented 
in the field. Examples of those changes are data 
management systems that enable a Geographic 
Information System (GIS) to be accessed via a 
mobile phone, the introduction of robotics and 
the deployment of AI across multiple tasks along 
with existing methodologies. Virtual Reality (VR) 
and Augmented Reality (AR) are being explored 
in order to contextualise the discoveries and 
leverage this technology to support educational 
ventures. Combining two of the afore-mentioned 
innovations is the ‘Reconstructing the Past: 
Artificial Intelligence and Robotics meet Cultural 
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Heritage’ (RePAIR) project,76 which is driven by the 
Ca’ Foscari University of Venice, the Ben-Gurion 
University of the Negev of Israel and the Italian 
Institute of Technology and supported partially 
by EU funds. The aim of the project was to deploy 
robotics, CV and AI modes for cases of a high 
degree of fragmentation, which would have 
made the restoration unfeasible for operators, 
despite the availability of specialised software. As 
discussed, Google DeepMind has been involved, in 
collaboration with academia, in the development 
of Ithaca, to restore and attribute ancient Greek 
inscriptions (Assael et al., 2022). These examples 
highlight the achievements as well as the 
possibilities for accelerating innovation within the 
field of archaeology, driven by the whole ecosystem 
of academia, large organisations and startups and 
how the synergies observed are in line with the 
projection of the future-ready archaeologist, which 
rests on deep expertise and interdisciplinarity.

3 .3 .4 RESEARCH COMMUNIT Y

The application of AI to ancient site discovery and 
virtual inscription restoration is emerging as a niche 
but highly interdisciplinary field. It brings together 
archaeology, epigraphy, computational linguistics, 
remote sensing and ML, with the goal of enhancing 

76  https://www.repairproject.eu/. 

the documentation, interpretation and preservation 
of cultural heritage. Progress in this domain has 
been made possible by the convergence of digitised 
corpora, imaging technologies and AI techniques, 
as well as by collaborative efforts spanning 
humanities research institutions, computer science 
labs and public heritage infrastructures. To explore 
the development of this research community, 315 
publications indexed in Scopus between January 
2020 and May 2025 (retrieved following the 
methodology described in Section 1.3) are examined 
by filtering for articles, reviews and conference 
papers containing the keywords the keywords 
described in Table 1. This analysis provides a 
quantitative snapshot of the field’s geographical 
distribution (Figure 34), institutional diversity (Figure 
35 and Figure 36) and collaborative patterns across 
regions and sectors (Figure 37).

In terms of geographical distribution (Figure 34), 
research in this area is strongly concentrated 
in the EU, which accounts for 196 publications 
(62.2%). Other contributing regions include the 
UK (16; 5.1%), the US (15; 4.8%), Switzerland 
(8; 2.5%), and China (6; 1.9%). This distribution 
reflects the EU’s leading investment in cultural 
heritage research infrastructures, as well as 
its long-standing academic networks in digital 
archaeology and epigraphy.

Figure 34. Global geographical distributions of scientific literature contributions related to ‘ancient site discovery’ and 
‘virtual inscriptions restoration’ topics, indexed by Scopus between Jan. 2020 and May 2025.

Number of publications

Longitude

La
tit

ud
e

co
un

t

0 50-50-100-150

-80

-60

-40

-20

0

20

40

60

80
175

150

125

75

100

50

25

100 150

Source: JRC’s own elaboration based on divinAI methodology.

https://www.repairproject.eu/


73

At the global level, research in this field is largely 
led by educational and academic institutions, 
which account for the vast majority of 
contributions (Figure 35). A more detailed analysis 
of the European landscape confirms this trend: 
within the EU, most publications originate from 
universities, followed by non-profit organisations, 
public research facilities, government bodies, and 

less prominently, private companies (Figure 36). 
This distribution reflects the strong anchoring 
of the field within the academic and cultural 
heritage sectors. The availability of digitised 
archives, shared infrastructure and open-source 
tools has enabled widespread participation, 
even among institutions with limited access to 
advanced computational resources.

Figure 35. Distribution of ‘ancient site discovery’ and ‘virtual inscriptions restoration’ literature contributions by type 
of establishments and geographical area. Considered contributions are indexed by Scopus between Jan. 2020 and 
May 2025.
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Figure 36. Amount of ‘ancient site discovery’ and ‘virtual inscriptions restoration’ literature contributions across 
EU countries by type of establishments over the years from Jan. 2020 to May 2025. Considered contributions are 
indexed by Scopus.
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Beyond institutional diversity, collaboration 
networks also shape the research landscape in 
this domain. Due to the strong concentration of 
activity in the EU, cross-regional collaborations 
are relatively modest in scale but most commonly 
involve partnerships with the UK, the US, 
Switzerland and Canada (Figure 37(a)). At the 
institutional level within the EU, the most frequent 

collaborations occur between educational 
institutions and non-profit organisations, as 
well as between universities and government 
bodies (Figure 37(b)). These patterns reflect the 
academic anchoring of the field and its strong 
ties to the public and cultural heritage sectors, 
with comparatively limited engagement from 
commercial actors.

Figure 37. Collaboration patterns in ‘ancient site discovery’ and ‘virtual inscriptions restoration’ fields. Amount of 
co-authored literature contributions by (a) geographical area and (b) type of establishments (only EU). Considered 
contributions are indexed by Scopus between Jan. 2020 and May 2025.
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Ancient site discovery and virtual restoration of inscriptions: Take-home messages

	– AI-driven methodologies, such as the analysis of remote sensing data (LiDAR and satellite 
imagery) and the application of DNNs, are significantly enhancing the discovery and 
preservation of archaeological sites and cultural heritage.

	– In the field of epigraphy, AI models have demonstrated the ability to surpass human 
performance in tasks such as restoring partially damaged ancient inscriptions, providing a 
powerful new tool for historical research.

	– This is a highly interdisciplinary domain, with a research community strongly anchored in EU 
and supported by initiatives like ARIADNE, which focuses on federating fragmented data and 
making it more accessible to researchers.

	– The primary challenges involve overcoming data fragmentation and ensuring ethical 
considerations, particularly those related to cultural sensitivity and bias, are at the forefront 
of AI deployment.
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4.

CHALLENGES AND 
OPPORTUNITIES
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The assessment of the use of Artificial 
Intelligence (AI) in science reveals that AI is 
already a widely used technology by researchers 
in varied fields, tasks, disciplines and steps of 
the scientific process. As an example, AlphaFold, 
developed in the biology domain, and specifically 
in the protein structure prediction field, showed 
the potential of AI for the acceleration of drug 
discovery, the enhancement of our understanding 
of disease mechanisms, and the unlock of 
innovative biotechnological applications. The 
use of AI for scientific discovery is both an 
opportunity to drive a new wave of innovation and 
a complex policy challenge. Creating an enabling 
environment for AI in science requires coordinated 
action across funding frameworks, governance 
mechanisms, infrastructure development and 
talent strategies. These policy domains are 
interconnected, and policy development is taking 
place in an environment where technological 
capabilities and research practices are shifting 
(European Commission: Directorate General for 
Research and Innovation and Montgomery, 2025). 
National policies for AI in science must address 
this complexity, as different patterns of adoption 
reflect a range of technical, institutional, and 
cultural influences (Bianchini et al., 2024).

In this section, the key opportunities and 
challenges associated with the integration of AI 
in scientific research are highlighted, and the 
relevant ingredients necessary for a responsible 
and effective uptake of AI technologies are 
discussed, including the need for critical 
evaluation, transparency and accountability.

4.1 Data, models and infrastructure

The access to high-quality data, computing 
infrastructure and scientific models have been 
found as the basic building blocks or facilitators 
for the uptake of AI in science.

Scientific data is the main ingredient for the 
development of AI models for science. Publicly 
available databases, such as the Protein Data 
Bank, discussed in Section 3.1, supported by the 
European Molecular Biology Laboratory (EMBL), 

have been instrumental in the development of 
cutting-edge models in the field. This dataset 
exemplifies the strength of community-driven 
and international collaboration for the building 
of high-impact datasets. However, AlphaFold 
and other protein structure prediction methods 
suppose a big leap in accuracy but are far from 
being perfect, due to constraints in the training 
(experimental) data. As is well-supported by the 
literature, the generation of scientific training 
data and standards for data combination appears 
to be more limited in certain fields of the social 
sciences and computational humanities, such as 
archaeology, in contrast with different research 
areas in the hard sciences. As is well-supported 
by the literature, the generation of scientific 
training data and standards for data combination 
appears to be more limited in certain fields of the 
social sciences and computational humanities, 
such as archaeology, in contrast with use cases 
in the hard sciences. This disparity stems from 
the distinct nature of their core challenges: 
while hard sciences face obstacles related to 
the physical world (Tang et al., 2025), hardware 
(Desai et al., 2025; Z. Liu et al., 2024) and the 
need for explainable causal models (Makke 
and Chawla, 2024), the social sciences and 
humanities confront more fundamental issues 
of inherent subjectivity (Bail, 2024), cultural 
bias (Binz et al., 2025) and the nuanced, often 
unquantifiable nature of their data (Xu et al., 
2024). Consequently, the ability of AI to generate 
truly representative training data or to set 
universal standards for combining qualitative, 
context-dependent information is significantly 
more constrained in these fields.

The training of scientific models from this data 
often demands access to High-Performance 
Computing (HPC) clusters and results in a 
high resource cost, which is sometimes only 
accessible to large laboratories. In this respect, 
community resources and shared infrastructures 
facilitate access and uptake even from European 
laboratories or research fields that may have 
small local computing budgets, as seen in all 
analysed fields. There is as well research being 
done to reduce model size leading to decrease 
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in infrastructure needs and related financial 
and environmental cost. European Union (EU) 
Initiatives such as the AI Factories77 can act as 
catalysts in the realisation of large-scale AI 
projects in different scientific fields.

A key emerging trend is the development of 
scientific foundation models. These are large, 
General-Purpose AI (GPAI) models pre-trained 
on vast, often multimodal, scientific datasets. 
Unlike traditional models tailored for a single 
task, foundation models are designed to learn 
fundamental relationships and principles across 
a broad scientific domain (e.g., molecular biology, 
materials chemistry, or geospatial data) (Wang 
et al., 2023). This allows them to perform zero-
shot learning, i.e. solving new problems without 
specific training, and facilitates transfer learning, 
where a pre-trained model can be rapidly 
adapted for a specialised task. For instance, a 
model already trained on a massive corpus of 
molecular structures and properties could be 
fine-tuned to predict a novel material’s activity or 
a protein’s drug-binding capability. While these 
models promise to accelerate discovery, they also 
bring new challenges. The immense resources 
required for their development concentrate power 
in a few large institutions, potentially creating 
dependencies for the wider scientific community 
(Binz et al., 2025). Ensuring these models 
are developed under open science principles, 
with shared data, weights and transparent 
methodologies, is therefore critical for maintaining 
an equitable and innovative research landscape.

Regarding the development of scientific AI models, 
a varied set of AI techniques and approaches are 
found in the literature, from the most traditional 
to novel developments in Machine Learning (ML), 
so not being restricted to recent developments in 
foundation and Large Language Models (LLMs). 
For instance, our analysis in Section 3.3 revealed 
the use of different ML architectures, from 
random forests to Deep Neural Networks (DNNs), 
used in the archaeological field. Generative AI 
(GenAI) models are the most promising ones in 

77  https://digital-strategy.ec.europa.eu/en/policies/ai-
factories/. 

the field of material discovery (see Section 3.2) 
based on Generative Adversarial Networks (GANs), 
Variational Autoencoders (VAEs) or autoregressive 
transformers and diffusion models, and their size 
is relatively moderate (i.e. five or six orders of 
magnitude) compared to state-of-the-art LLMs. 
However, these models are instrumental in several 
scientific tasks, notably in literature review or 
scientific writing, as discussed in Section 2. In 
addition, ML techniques, when used in specific 
scientific tasks, evolve and incorporate specific and 
realistic contexts from that particular task. This is 
the case for instance in automated models used 
for protein design which incorporate molecular 
context in which proteins function, as presented in 
Section 3.1.

In terms of model sharing, it is observed that 
scientific AI models are frequently released 
as web tools, which lowers the infrastructure 
barrier to entry for the use (not training) of 
these models. In this context, and connected to 
the concept of open science, the uptake of AI 
brings the need to incorporate concepts linked 
to open infrastructures, data and open-source AI 
as facilitators for research reproducibility and to 
lower the accessibility barrier. For instance, as 
commented in Section 3.1, the protein structure 
prediction field has in its heart the open science 
principles, with models being trained on publicly 
available data and in turn released as open-source 
frameworks.

A disparity in resources exists between larger and 
smaller countries, with many scientists in under-
resourced EU nations facing significant barriers 
to access HPC resources and expertise ((European 
Commission: Directorate General for Research and 
Innovation, Group of Chief Scientific Advisors and 
King, 2025; European Commission: Directorate 
General for Research and Innovation and Groznik, 
2025). This is exacerbated by the fact that few 
countries have dedicated HPC facilities for AI, with 
many still focused on traditional applications, 
which can hinder AI research (European 
Commission: Directorate General for Research and 
Innovation, Group of Chief Scientific Advisors and 
King, 2025). Industry dominance in computing 

https://digital-strategy.ec.europa.eu/en/policies/ai-factories/
https://digital-strategy.ec.europa.eu/en/policies/ai-factories/
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resources also makes it easier for private 
companies to attract talent and invest in research, 
further widening the gap and raising concerns 
about equitable access (Ahmed et al., 2023). The 
immense resources required for the development 
of scientific foundation models concentrate power 
in a few large institutions, potentially creating 
dependencies for the wider scientific community 
(Binz et al., 2025).

4.2 Skills and innovation

The uptake of AI in science generates new 
requirements for specialised expertise among 
researchers and research teams. The analysis 
on skills in the three selected deep dives (see 
Section 3) agree on the need for hybrid (inter- and 
multidisciplinary) teams that combine expertise 
in engineering and computer sciences with 
specific domain expertise, where full autonomy 
does not have to be a goal in itself. This ensures 
the factuality and soundness of scientific 
findings, and the tailoring of approaches to 
specific scientific data and research questions. 
The future-ready research in protein structure 
prediction, for instance, is proficient in both 
structural biology and AI/HPC principles, and 
the collaboration across establishments such 
as the one between DeepMind and EMBL has 
been shown to be crucial for AI innovation. The 
example of the archaeology field, and similarities 
in other social sciences domains, brings 
together disciplines traditionally far in terms of 
methodologies and approaches, making inter-
disciplinarity fundamental to the fields’ ability to 
generate meaningful scientific insights.

However, talent strategies across EU face 
significant challenges, including a lack of flexible 
career progression pathways and difficulties in 
retaining talent in research institutions due to 
competition with the private sector (European 
Commission: Directorate General for Research and 
Innovation and Groznik, 2025). The skills needed 
for AI in science span a wide range, from technical 
AI capabilities to interdisciplinary collaboration and 
data management. Without clear career directions 
and adequate funding, the public sector struggles 

to compete with the lucrative opportunities offered 
by big tech companies (European Commission, 
Directorate General for Research and Innovation 
and Groznik, 2025; Jurowetzki et al., 2025). This 
challenge is particularly acute for ‘hybrid’ roles 
that combine expertise in AI with deep scientific 
domain-specific knowledge.

The EU has also launched several initiatives 
aimed at fostering interdisciplinary collaboration 
and digitally-enabled research in the arts and 
humanities. For instance, the Digital Research 
Infrastructure for the Arts and Humanities 
(DARIAH)78 brings together scholars from diverse 
disciplines to support innovative research and 
teaching methodologies across the arts and 
humanities, covering fields such as the intersection 
of AI and music, as well as the analysis and 
linking of bibliographical data. To facilitate the 
effective implementation of AI in various scientific 
domains, a range of educational resources, toolkits, 
encyclopaedias, standards and best practices have 
been developed, providing a comprehensive set of 
tools and guidelines for researchers and educators 
to efficiently leverage AI in their daily work 
activities. In this context, the EC’s AI Office has taken 
several actions to promote AI literacy. It has notably 
published a set of FAQs to assist stakeholders, 
hosted webinars and created a living repository79 of 
best practices to help organisations tailor training 
to their staff. The AI Office is also rolling out broader 
initiatives like the ‘AI SkillsAcademy’ under the AI 
Continent Action Plan.80

4.3 Ethical and legal considerations

The use of AI in scientific research raises a 
variety of ethical and legal concerns that must 
be addressed to ensure responsible development 
and deployment. These concerns span issues such 
as privacy and data protection, bias and fairness, 
transparency and explainability, human oversight, 
and the broader impact on environmental and 

78  https://www.dariah.eu/. 
79  https://digital-strategy.ec.europa.eu/en/library/living-
repository-foster-learning-and-exchange-ai-literacy.
80  https://digital-strategy.ec.europa.eu/en/factpages/ai-
continent-action-plan.

https://www.dariah.eu/
https://digital-strategy.ec.europa.eu/en/library/living-repository-foster-learning-and-exchange-ai-literacy
https://digital-strategy.ec.europa.eu/en/library/living-repository-foster-learning-and-exchange-ai-literacy
https://digital-strategy.ec.europa.eu/en/factpages/ai-continent-action-plan
https://digital-strategy.ec.europa.eu/en/factpages/ai-continent-action-plan
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societal well-being. These topics are closely 
aligned with the seven key requirements defined 
by the ‘Ethics Guidelines for Trustworthy AI’ 
(European Commission, Directorate-General 
for Communications Networks, Content and 
Technology and High-Level Expert Group on 
Artificial Intelligence, 2019).

The European Research Area (ERA) Forum, a 
key stakeholder body in the European research 
landscape, has also highlighted several key 
principles for the responsible use of GenAI 
in research in their ‘Living guidelines on the 
responsible use of generative AI in research’ 
(European Commission, Directorate General 
for Research and Innovation, 2025). These 
principles are built on the ‘European Code of 
Conduct for Research Integrity’ (ALLEA, 2023) 
and the already mentioned trustworthy AI 
guidelines, and emphasise reliability, honesty, 
respect and accountability. Acknowledging the 
systemic pressures within the contemporary 
research landscape, these guidelines affirm 
the indispensable role of human oversight. AI 
systems are to be regarded as instruments 
in the research process, not as authors or co-
authors. Consequently, the researcher is directly 
accountable for the validity and integrity of 
their scientific output, a duty that includes 
understanding and mitigating the tool’s limitations, 
such as prompt bias (sycophantic behaviour) and 
the generation of erroneous citations. This notion 
of human responsibility intersects with several 
already well-established research practices. For 
example, researchers are accustomed to rigorous 
ethical review procedures and data protection 
regulations. However, the integration of AI requires 
extending these frameworks to account for the 
unique properties of algorithmic systems, such 
as their opacity, dependence on training data and 
probabilistic outputs.

Transparency is a core requirement. Researchers 
must use AI tools transparently and disclose their 
use in the research process, particularly when an 
AI tool has a substantial impact on the results. 
This includes being mindful of the stochastic 
nature of GenAI, which can produce different 

outputs from the same input. Confidence scores, 
uncertainty estimates and benchmarks are 
already used in certain fields (e.g. protein structure 
prediction; see Section 3.1) to support the 
interpretability and reproducibility of AI-assisted 
results. Another critical issue is AI interpretability, 
that is, the ability for both researchers and 
external observers to understand how an AI 
system arrived at a specific output. A lack of 
interpretability, particularly in black-box models 
like NNs, can hinder scientific trust, limit peer 
scrutiny and challenge reproducibility. This is vital 
not only for scientific accountability but also for 
interdisciplinary collaboration. Section 3.3 provides 
an example where interpretability helps bridge 
computational and archaeological thinking.

Bias and fairness are also prominent concerns. 
In scientific research, algorithmic bias may 
emerge from skewed training data, inappropriate 
model assumptions or cultural and contextual 
insensitivity (Purificato et al., 2024). In fields such 
as archaeology, the geographical origin or cultural 
background embedded in datasets may lead to 
distorted outputs if not properly accounted for. 
Moreover, AI systems can inadvertently reinforce 
existing scientific hierarchies, marginalise 
underrepresented methodologies or geographies, 
and limit epistemic diversity. Bias and fairness 
are also closely linked to the principle of 
respect for colleagues, research participants, 
society, ecosystems, cultural heritage and the 
environment.

Data governance, including privacy and intellectual 
property aspects, are also of paramount 
importance. Researchers are responsible for 
ensuring they have a clear legal basis for 
processing any personal data, in line with EU 
data protection rules, such as the General Data 
Protection Regulation (GDPR) (Regulation (EU) 
2016/679). In high-stakes domains, AI can pose 
dual-use risks, where models developed for 
scientific inquiry may be repurposed for harmful 
or unintended applications. For example, advanced 
protein structure models could facilitate protein 
design applications with potential biosafety risks 
(see Section 3.1). While organisations have begun 
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to assess and mitigate such risks, the fast pace of 
AI development makes it difficult to anticipate all 
possible downstream consequences. 

From a regulatory perspective, the EU AI Act 
(Regulation (EU) 2024/1689) introduces a new 
legal framework for AI in Europe. While the act 
includes a ‘research exemption’ (Art. 6) that 
excludes scientific research from most obligations, 
its provisions may still apply once research 
outputs transition into deployable or marketable 
systems. This raises important questions about 
legal boundaries, responsibilities and oversight. 
As a result, researchers should be supported 
early on in considering compliance-by-design 
and ethics-by-design approaches, to align their 
AI systems with evolving regulatory frameworks 
and ethical norms. These considerations suggest 
that the ethical and legal dimensions of AI in 
science are not static or external constraints but 
active components of scientific quality, credibility, 
and societal responsibility. In this context, it is 
essential to acknowledge the potential risks 
associated with the uncritical adoption of AI tools, 
including the possibility of inventing references or 
identifying spurious correlations, as highlighted 
by recent studies (Buriak et al., 2023), which can 
have significant consequences for the research 
evaluation process and the integrity of scientific 
research (Eriksson et al., 2025).

4.4 Social dimension of science

Beyond legal and ethical considerations, the 
integration of AI in scientific research brings 
profound societal implications. AI is not only 
transforming how research is conducted but also 
reshaping social structures, cultural practices 
and public trust in science. This interplay has 
been described in the literature as creating 
‘algorithmically infused societies’ (Wagner et al., 
2021), where algorithmic systems act as bridges 
between science and society, influencing how 
information flows and decisions are made. In this 
context, Computational Social Science (CSS) has 
emerged as a key interdisciplinary field at the 
intersection of AI and the social sciences. CSS 
involves the application of AI and computational 

methods to study, simulate and understand 
complex social phenomena. It integrates tools 
such as ML, Natural Language Processing (NLP) 
and network analysis into disciplines including 
sociology, psychology, economics, political science 
and cognitive science (Conte et al., 2012; Lazer et 
al., 2009; Xu et al., 2024). This section explores 
the dual perspective of AI as both a tool for 
understanding society and a social force in itself.

	– Psychology and cognitive sciences. LLMs 
have been used to detect depressive 
symptoms from social media data (K. Yang 
et al., 2023), infer personality traits from 
digital traces (Rao et al., 2023), and predict 
short-term mental states using smartphone 
and sensor data (Webb et al., 2025). In 
online learning, AI has been used to create 
adaptive learning systems that personalise 
educational content and pace for students 
(Bühler et al., 2025). While these tools aim 
to improve learning outcomes, a societal 
implication is the risk of entrenching 
educational inequality if the models are 
trained on biased data, perpetuating 
existing performance gaps.

	– Political science. LLMs have supported 
media bias detection and political stance 
classification, which can be a valuable 
tool for researchers (Ziems et al., 2024). 
However, the use of such models also has 
a societal implication: if these AI tools are 
used to curate news feeds of flag ‘biased’ 
content without transparency, they could 
inadvertently shape public opinion and 
political discourse, creating a new form of 
algorithmic influence (Chioma and Lepe, 
2024; Gandini et al., 2025).

	– Sociology. AI has enhanced hate speech and 
misinformation detection. A relevant study 
showed that LLMs can identify implicit 
hate but may mislead users in borderline 
cases (Huang et al., 2023), while another 
combined framing theory with neural 
networks to detect reframed narratives in 
news content (G. Wang et al., 2025).
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	– Finance. Domain-specific LLMs trained 
on financial corpora have demonstrated 
strong performance on tasks like sentiment 
analysis, classification and information 
extraction in financial documents (S. Wu et 
al., 2023).

	– Linguistics. AI models are now powerful 
tools for analysing vast linguistic corpora, 
allowing researchers to study historical 
language evolution (Liang et al., 2023) or 
trace the spread of misinformation in new 
ways (Saeidnia et al., 2025). However, these 
same models, when used as translation 
or communication tools, can homogenise 
language and cultural nuances, potentially 
leading to a loss of linguistic diversity over 
time (Bella et al., 2024). This demonstrates 
how a tool for scientific analysis can also 
have a profound societal impact on cultural 
heritage.

These examples underscore the dual role of AI 
as both a tool for understanding society and a 
social force in itself. As LLMs and other AI tools 
are integrated into the practice of social science, 
they bring with them opportunities for new forms 
of analysis, but also risks of reinforcing biases, 
reducing transparency and limiting contextual 
understanding (T. Hu et al., 2024)particularly 
the tendency to favor one’s own group (ingroup 
solidarity. A critical societal implication of AI in 
science is thus the need for multidisciplinary 
oversight and collaboration. Technical experts, 
social scientists, and ethicists must work together 
to ensure that AI models and infrastructures 
reflect human values, safeguard social equity, and 
promote knowledge that benefits all members 
of society. In doing so, scientific AI development 
becomes not only a technical challenge but a 
societal effort.

4.5 Collaborations

AI’s role in scientific research is driving new 
forms of collaboration. This is largely due to 
the need for interdisciplinary expertise, where 
technical knowledge of AI must be combined with 

deep domain-specific understanding to produce 
meaningful and reliable scientific outcomes. The 
central role of academia in advancing the field is 
clear, with a notable and growing contribution from 
external partners, including industry stakeholders 
such as start-ups and scale-ups, as well as 
public research institutions. For instance, a 325% 
increase in publications with private company 
affiliations from 2020 to 2024 is observed in 
the field of protein structure prediction (see 
Section 3.1), along with an ecosystem of startups 
specifically focused on leveraging advanced AI 
tools to enhance materials discovery research (see 
Section 3.2). This reflects the fact that industry is 
catching up on the use of AI in science, especially in 
recent years.

This interdisciplinarity, offering significant 
opportunities in the AI in science field, should 
be then embraced by research organisations, 
funding agencies or scientific association for 
the promotion of hybrid teams, evaluation 
panels, projects and communities across 
relevant disciplines. However, there are also 
some associated challenges. The report’s deep 
dives (Section 3) highlight the need to bridge 
methodological and cultural divides between 
disciplines that have traditionally operated in silos. 
Technical experts and domain specialists must 
overcome differences in language, values and 
epistemic assumptions to co-create research that 
is both computationally sound and contextually 
relevant. As discussed in Section 4.4, AI, if 
not carefully governed, can reinforce existing 
scientific hierarchies or limit epistemic diversity 
by favouring data-rich, well-established areas of 
inquiry. This makes collaboration a vital tool for 
ensuring that AI-driven science remains inclusive, 
rigorous, and reflective of a diverse range of 
perspectives.

The investigation conducted in this report 
also reveals the critical role of collaboration 
networks, involving educational institutions, 
government bodies, research facilities, non-profit 
organisations and private companies, as well as 
the international dimension of scientific research 
involving AI. Even though collaboration networks 
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might vary according to the discipline, EU-
affiliated researchers in the studied fields were 
found to have a diverse array of collaborations 
across establishment and borders, compared to 
the other regions considered. Finally, international 
cooperation is recognised as a pivotal component 
of scientific progress, given that science is a 
global endeavour that transcends national 
boundaries and relies on the establishment of 
research networks and collaborations across the 
world.
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5. 

CONCLUSIONS
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This final section synthesises the science-for-
policy report’s findings and interprets them in the 
context of the policy questions and objectives 
presented at its outset. The study confirms that 
Artificial Intelligence (AI) is a transformative, 
interdisciplinary and international force, already 
integrated into nearly all scientific disciplines. 
While AI offers immense opportunities to 
accelerate discovery and enhance research, its 
responsible uptake requires a coordinated and 
evidence-based approach to address significant 
technical, interdisciplinary and ethical challenges. 
The extensive analysis conducted across the 
scientific process and in three distinct deep dives, 
i.e. protein structure prediction, material discovery 
and computational humanities (specifically 
ancient site discovery and virtual restoration 
of inscriptions) reveals several key findings 
with potential policy implications supporting 
the adoption of the European Strategy for AI in 
Science.

First, the potential of AI is intrinsically linked 
to the principles of open science. The 
report demonstrates that publicly available 
data repositories, open-source models and 
collaborative infrastructures, such as the Protein 
Data Bank (PDB) and the materials databases 
discussed, have been instrumental in driving 
breakthroughs. Moreover, AI models have proven 
highly effective at automated data processing 
and pattern recognition, enabling researchers 
to efficiently analyse large multimodal datasets 
far beyond human capability, as seen in fields 
from genomics to astronomy. The report also 
notes the emerging trend of AI serving as a ‘co-
scientist’ in hypothesis generation, accelerating 
literature analysis and suggesting novel ideas. 
Therefore, to sustain this pace of innovation 
and ensure reproducibility, policy actions should 
prioritise expanding and supporting these open 
ecosystems.

Second, the study highlights a growing 
demand for robust computational and data 
infrastructure. Advanced AI models, like the 
examined fields of protein structure prediction 
and material discovery, require significant 

resources for training and deployment. This need 
for High-Performance Computing (HPC) presents 
a strategic challenge and an opportunity for the 
EU to secure its leadership position in AI research. 
Targeted investment in these areas is essential to 
prevent a widening resource gap between large 
institutions and smaller research teams across 
the EU.

Third, the integration of AI necessitates the 
cultivation of a multidisciplinary talent base. 
As demonstrated by the report’s deep dives, 
the most impactful research occurs at the 
intersection of AI expertise and deep domain-
specific knowledge. The ‘future-ready researcher’ 
or ‘future-ready research teams’ is not only 
proficient in a scientific discipline but also skilled 
in data science and software engineering. This 
combination is crucial for effectively leveraging 
AI in tasks like experiment design and 
optimisation, where AI systems can accelerate 
and automate hypothesis testing in ‘self-driving 
labs’. Policy should address the challenges of 
retaining such ‘hybrid’ talent in the public sector 
by offering competitive career paths and fostering 
interdisciplinary training programs.

Finally, while AI is widely recognised as a powerful 
tool, it is not without its risks. The report identifies 
concerns such as algorithmic bias, the potential 
for AI models to generate fabricated data (called 
‘hallucinations’) and the risk of reinforcing 
existing paradigms, leading to the so-called 
‘epistemic drift’. These ethical considerations 
must be at the forefront of AI governance. This is 
particularly relevant in biology, where AI models 
for protein structure prediction are now used in 
lab settings, but their adoption in clinical practice 
remains limited due to the need for models that 
can accurately account for real-life conditions. 
The identified societal risks are also evident 
in the communication of results, where AI-
assisted writing tools, while efficient, raise critical 
questions about authorship, originality and the 
trustworthiness of generated content.
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