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Untangling introductions and persistence in 
COVID-19 resurgence in Europe

Philippe Lemey1,2 ✉, Nick Ruktanonchai3,4, Samuel L. Hong1, Vittoria Colizza5, Chiara Poletto5, 
Frederik Van den Broeck1,6, Mandev S. Gill1, Xiang Ji7, Anthony Levasseur8, Bas B. Oude 
Munnink9, Marion Koopmans9, Adam Sadilek10, Shengjie Lai3, Andrew J. Tatem3, Guy Baele1, 
Marc A. Suchard11,12,13 & Simon Dellicour1,14 ✉

Following the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced 
a resurgence of the virus starting in late summer 2020 that was deadlier and more 
difficult to contain1. Relaxed intervention measures and summer travel have been 
implicated as drivers of the second wave2. Here, we build a phylogeographic model to 
evaluate how newly introduced lineages, as opposed to the rekindling of persistent 
lineages, contributed to the COVID-19 resurgence in Europe. We inform this model 
using genomic, mobility and epidemiological data from 10 European countries and 
estimate that in many countries over half of the lineages circulating in late summer 
resulted from new introductions since June 15th. The success in onward transmission 
of newly introduced lineages was negatively associated with local COVID-19 incidence 
during this period. The pervasive spread of variants in summer 2020 highlights the 
threat of viral dissemination when restrictions are lifted, and this needs to be carefully 
considered by strategies to control the current spread of variants that are more 
transmissible and/or evade immunity. Our findings indicate that more effective and 
coordinated measures are required to contain spread through cross-border travel 
even as vaccination begins to reduce disease burden.

Upon successfully curbing transmission in spring 2020, many Euro-
pean countries witnessed a resurgence in COVID-19 cases in late sum-
mer. The number of COVID-19 infections increased rapidly, and by the 
end of October, it was clear that the continent was deep into a second 
epidemic wave. This forced governments to reimpose lockdowns and 
social restrictions in an effort to contain the resurgence. While these 
measures reduced infection rates across Europe3, several countries 
witnessed a stabilization at high levels or even a new surge in infections. 
The spread of more transmissible variants, in particular B.1.1.7 (Variant 
of Concern 202012/01 or 20I/501Y.V14), which was first identified in the 
United Kingdom (UK), has considerably exacerbated the challenge to 
contain COVID-19.

Already early on in the pandemic, modelling studies warned about 
new waves due to partial relaxation of restrictions5 or seasonal varia-
tions6. By mid-April, the European Commission constructed a road-
map to lifting coronavirus containment measures7, recommending 
a cautious and coordinated manner to revive social and economic 
activities. However, the early start of the devastating second wave 
demonstrated that there was insufficient adherence to these measured 

recommendations. Cross-border travel, and mass tourism in particular, 
has been implicated as a major instigator of the second wave. Genomic 
surveillance demonstrated that a new variant (lineage B.1.1778, 20A.EU1 
[nextstrain.org]), which emerged in Spain in early summer, has spread 
to multiple locations in Europe2. While this variant quickly grew into 
the dominant circulating SARS-CoV-2 strain in several countries, it did 
not appear to be associated with a higher intrinsic transmissibility2.

Although it appears clear that travel significantly contributed to the 
second wave in Europe, it remains challenging to assess how it may have 
restructured and reignited the epidemic in the different European coun-
tries. Even without resuming travel, relaxing containment measures 
when low-level transmission is ongoing risks the proliferation of locally 
circulating strains. Phylodynamic analyses may provide insights into 
the relative importance of persistence versus the introduction of new 
lineages, but such analyses are complicated for SARS-CoV-2 for different 
reasons. Phylogenetic reconstructions may be poorly resolved due to 
the relatively limited SARS-CoV-2 sequence diversity9. This is further 
confounded by the degree of genetic mixing that can be expected from 
unrestricted travel prior to the lockdowns in spring 2020.
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Mobility data predicts SARS-CoV-2 spread
We analysed SARS-CoV-2 B.1 (20A) genomes from 10 European countries 
for which a minimal number of genomes from the second wave were 
already available on November 3rd, 2020. Using a two-step procedure 
that relied on subsampling relative to country-specific case counts 
(cfr. Methods), we compiled a data set of close to 4,000 genomes 
sampled between January 29th and October 30th, 2020 (Extended Data 
Table 1). In order to achieve maximum resolution in our evolutionary 
reconstructions, we constructed a Bayesian time-measured phylogeo-
graphic model that integrates mobility and epidemiological data. Our 
approach simultaneously infers phylogenetic history and ancestral 
movement throughout this history while also identifying the drivers 
of spatial spread10. We used the latter functionality to determine the 
most appropriate mobility or connectivity measure. Specifically, we 
considered international air transportation data, the Google COVID-19 
Aggregated Mobility Research Dataset (also referred to here as ‘mobility 
data’ for short), as well as Facebook’s Social Connectedness Index (SCI), 
as covariates of phylogeographic spread (Extended Data Figure 1). The 
Google mobility data contains anonymized mobility flows aggregated 
over users who have turned on the Location History setting, which is off 
by default (cfr. Methods). The Social Connectedness Index reflects the 
structure of social networks and has been suggested to correlate with 
the geographic spread of COVID-1911. To help inform the phylogenetic 
coalescent time distribution, we parameterized the viral population 
size trajectories through time as a function of epidemiological case 
count data for the countries under investigation.

Analyses using both time-homogeneous and time-inhomogeneous 
models offered strong support for mobility data as a predictor of spatial 
diffusion whereas air transportation data and SCI offered no predictive 
value (Extended Data Table 2). The fact that mobility data encompass-
ing both air and land-based transport are required to explain COVID-
19 spread highlights the need to consider both types of transport in 
containment strategies. To ensure that containment strategies were 
accommodated by our reconstructions, we further extended our 
time-inhomogeneous approach to model bi-weekly variation in the 
overall rate of spread between countries as a function of mobility (cfr. 
Methods, Extended Data Table 2).

Dynamic viral transmission through time
We use our probabilistic model of spatial spread informed by genomic 
data, mobility and epidemiological data to characterize the dynam-
ics of spread throughout the epidemic in Europe. We first focus on 
the ratio of introductions over the total viral flow in and out of each 
country over time and the genetic structure of country-specific trans-
mission chains (Figure 1). For the latter, we use a normalized entropy 
measure that quantifies the degree of phylogenetic interspersion of 
country-specific transmission chains in the SARS-CoV-2 phylogeny 
(cfr. Methods). Although estimates for individual dispersal between 
pairs of countries can also be obtained (Extended Data Figure 2), we 
remain cautious in interpreting these as direct pathways of spread 
because the genome sampling only covers a restricted set of European 
countries. The mobility to/from each country within our 10-country 
sample covers between 64% and 96% of the mobility of these countries 
to/from all countries within Europe (Extended Data Table 3, Extended 
Data Figure 3), except for Norway (27%), for which other Scandinavian 
countries account for considerable mobility connections (61%), and 
the UK (49%), for which Ireland accounts for a large fraction of mobility 
connections (38%).

According to the proportion of introductions, we estimate more viral 
import than export events for Switzerland, Norway, the Netherlands 
and Belgium throughout most of the time period under investigation. 
According to the estimated phylogenetic entropy, these countries 
also experienced many independent transmission chains since the 

epidemic started to unfold. This is consistent with country-specific 
studies; for the first wave in Belgium for example, about 331 individual 
introductions were estimated in the ancestry of a limited sample of 
740 genomes12. For Portugal, we also estimate higher proportions of 
introductions early in the first wave but with a subsequent decline to 
predominantly export events. France, Italy and Spain on the other 
hand are characterized by a relatively high viral export during the first 
wave. The proportion of introductions remained relatively low for Italy 
and Spain following the first wave, while in France these proportions 
were high from mid-June until the end of July. The absolute number 
of transitions in our sample are however low during this time period. 
These countries also had comparatively lower entropy values early in 
the epidemic, with an increase for France by the start of summer and a 
more gradual increase over time for Italy. In Spain however, the genetic 
complexity of SARS-CoV-2 transmission chains remained limited. In the 
UK and Germany, the viral flow in and out of the country was initially 
relatively balanced. A recent large-scale genomic analysis in the UK indi-
cates that this can imply very high absolute numbers of cross-country 
transmissions, as more than 2,800 independent introduction events 
were identified from the analysis of 26,181 genomes13. Although our 
sample is limited compared to this analysis, our reconstructions also 
recover major influx from Spain, France and Italy during the first 
wave in the UK (Extended Data Figure 2). We estimate an increase in 
the proportion of introductions for the UK from mid-June, indicat-
ing an important viral import relative to export around this time. The 
phylogenetic entropy also peaked around this time. In Germany, the 
proportions increased somewhat later in summer with a concomitant 
rise in phylogenetic entropy.

Introductions thrive in low incidence
To assess the impact of summer travel on the second wave in the differ-
ent countries, we use our genomic-mobility reconstruction to estimate 
both the number of lineages persisting in each country and the number 
of newly introduced lineages, and how these proliferated early in the 
second wave. We focus on a two-month time period between June 15th, 
on which many EU and Schengen-area countries opened their borders 
to other countries, and August 15th, before which the majority of holiday 
return travel is expected for many countries. We identify the number 
of lineages circulating in each country on August 15th, and determine 
whether they result from a lineage that persisted since June 15th or from 
a unique introduction after this date (independent of the number of 
descendants for this lineage on August 15th, Extended Data Figure 4). In 
Figure 2, we plot i) the ratio of these unique introductions over the total 
unique lineages (unique introductions and persisting lineages) (p1), 
ii) the proportion of descendant lineages on August 15th that resulted 
from the unique introductions over the total descendants circulating 
on this date (p2), and iii) the proportion of descendant tips (sampled 
genomes) after August 15th that resulted from the unique introduc-
tions over the total number of descendant tips (p3, cfr. Methods and 
Extended Data Figure 4). We estimate a posterior mean proportion 
of unique introductions that is close to or higher than 0.5 except for 
Spain and Portugal. This indicates that by August 15th a relatively large 
fraction of circulating lineages in each country was spawned by new 
introductions over summer. Because the B.1.177/20A.EU1 variant that 
was predominantly disseminated through summer travel does not 
appear to be more transmissible2, this was unlikely due to intrinsic 
advantages of the newly introduced viruses.

The two proportions of descendants from these introductions on 
August 15th (p2) and after this date (p3) measure the relative success 
of newly introduced lineages compared to persisting lineages, indi-
cating considerable variation in onward transmission. In Figure 2, 
the country estimates are ordered according to decreasing average 
incidence during the June 15th - August 15th time period, suggesting that 
incidence may shape the outcome of the introductions. In countries 
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that experienced relatively high summer incidence (e.g. Spain, Por-
tugal, Belgium and France), the introductions lead to comparatively 
fewer descendants on August 15th or after. We find a significant overall 
association between incidence and the difference in the logit-scaled 
proportion of unique introductions and the logit-scaled proportion 
of their descendants on August 15th (p = 0.007) as well as between 
incidence and the difference in the logit-scaled proportion of unique 
introductions and the logit-scaled proportion of descendant tips after 
August 15th (p = 0.019, Extended Data Figure 5). With comparatively 
few descendants from introductions (Figure 2), Norway may to some 
extent be an outlier because lineages estimated as persisting in this 
country could in fact be introductions from other Scandinavian 
countries that are not represented in our genome sample. We recover 
qualitatively similar, but more variable and statistically unsupported 
associations between the success of introductions and incidence for 
the two-month time periods before and after the June 15th - August 15th 
time period (Extended Data Figure 5). This indicates that the compara-
tively higher proportion of introductions as well as the more stable 
and lower incidence between June 15th and August 15th provided the 
ideal conditions for a process of genetic drift by which introductions 
were able to fuel transmission.

Our estimates show that introductions in the UK particularly ben-
efited from the conditions for successful onward transmission (Fig-
ure 2), with a considerable fraction of introductions originating from 
Spain (Extended Data Figure 6) reflecting the spread of B.1.177/20A.EU1 
that rapidly became the most dominant strain in the UK2. Our analysis 
captures the expansion of this variant as well as that of B.1.160/20A.EU2, 
which together account for more than 25% of the genomes in our data 
set. While Spain was indeed inferred to be the origin of B.1.177/20A.EU1, 
the UK also considerably contributed to its spread (Figure 3). The earli-
est introduction from Spain to the UK was estimated around the time 
Spain opened most EU borders ( June 21st, Figure 3). While introductions 
from Spain to other countries soon followed, we estimate a similar rate 
and amount of spread from the UK to other countries before these other 
countries also further disseminated the virus. Although inferred from 
a limited sample, this illustrates a dynamic pattern of spread and the 
importance of the early establishment of B.1.177/20A.EU1 in the UK 
that likely served as an important secondary center of dissemination. 
We note however that this pattern may be impacted by the intensive 
and continuous genomic surveillance in the UK, which may also be 
reflected in our subsample of the available data. While the UK is also 
involved in the spread of B1.160/20A.EU2, this variant has been largely 
disseminated from France. The simple fact that this variant expanded 
later in France and subsequently also started to spread later compared 
to B.1.177/20A.EU1 (Extended Data Figure 7) may explain why the latter 
spread more successfully.

Discussion
Our Bayesian phylogeographic approach builds on a rich history of 
identifying drivers of spatial spread, with applications to various path-
ogens at different spatial scales, ranging from air transportation for 
influenza at a global scale 910 to gravity model transmission for Ebola 
in West Africa14. Such studies use a relatively limited genomic sam-
ple to gain insights into viral transmission dynamics. This is also the 
case in our application to SARS-CoV-2 in Europe for which we further 
extend the phylodynamic data integration approach to confront the 
lack of resolution offered by SARS-CoV-2 genomic data. A concerted 
effort in containing international spread further sets apart the COVID-
19 pandemic from these earlier events. For this reason, we have now 
incorporated variation in mobility over time to account for the impact 
of these measures. Our reconstructions show that the composition of 
lineages circulating towards the end of the summer was to a signifi-
cant extent shaped by introductions in most of the European coun-
tries. The relative success of onward transmission of the introduced 

lineages appears to be shaped by local COVID-19 incidence during  
summer.

Our results should be interpreted in light of several important lim-
itations. In addition to a limited overall size, the genome data only 
cover a selection of European countries, implying that we are missing 
transmission events that involve unsampled countries. This may be 
important for Norway for example, which according to our mobility 
data, is largely connected to other Scandinavian countries. We also lack 
sampling from eastern Europe, which was to a large extent spared by 
border controls and lockdowns during the first wave, but witnessed 
high excess mortality rates during the second wave. The emergence 
of more transmissible variants has led to more intensified genomic 
surveillance, so similar phylodynamic reconstructions may now be 
performed on a wider scale.

The pandemic exit strategy offered by vaccination programs is a 
source of optimism that also sparked proposals by EU member states to 
issue vaccine passports in a bid to revive travel and rekindle the econ-
omy. In addition to implementation challenges and issues of fairness, 
there are risks associated with such strategies when immunization is 
incomplete, as likely will be the case for the European population this 
summer. A recent modelling study for the United Kingdom suggests 
that vaccination in adults alone is unlikely to completely halt the spread 
of COVID-19 cases and that lifting containment measures early and 
suddenly can lead to a large wave of infections15. A gradual release 
of restrictions was shown to be critical for minimizing the infection 
burden15. We believe that travel policies may be a key consideration 
in this respect because similar conditions may arise as the ones we 
demonstrated to provide fertile ground for viral dissemination and 
resurgence in 2020. This may now also involve the spread of variants 
that evade immune responses triggered by vaccines and previous 
infections. Well-coordinated European strategies will therefore be 
required to manage the spread of SARS-CoV-2 and reduce future waves 
of infection, with hopefully a more unified implementation than hith-
erto observed.
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Fig. 1 | Mobility, genome sampling, case counts and phylogeographic 
summaries through time for 10 European countries. The first panel 
summarizes the country-specific Google mobility influx in the 10 countries 
during two-week intervals, while the second panel depicts the weekly genome 
sampling by country used in the phylogeographic analysis. In the remaining 
panels, we plot for each country the ratio of introductions over the total viral 
flow from and to that country (for two-week intervals) and a monthly 
normalized entropy measure summarizing the phylogenetic structure of 
country-specific transmission chains. The posterior mean ratios of 
introductions are depicted with circles that have a size proportional to the total 
number of transitions from and to that country and the grey surface represents 

the 95% highest posterior density (HPD) intervals. The posterior mean 
normalized entropies and 95% HPD intervals are depicted by dotted lines. 
These normalized entropy measures indicate how phylogenetically structured 
the epidemic is in each country, and ranges from 0 (perfectly structured,  
e.g., a single country-specific cluster) to 1 (unstructured interspersion of 
country-specific sequences across the entire SARS-CoV-2 phylogeny). The 
introduction ratios and normalized entropy measures are superimposed over 
COVID-19 incidence (daily cases/106 people) reported for each country through 
time (coloured density plot). The two vertical dashed lines represent the 
summer time interval (June 15th and August 15th, 2020) for which we 
subsequently evaluate introductions versus persistence (cfr. Figure 2).
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Fig. 2 | Posterior estimates for the relative importance of lineage 
introduction events in 10 European countries and their association with 
incidence. We report three summaries (posterior mean and 95% HPD intervals) 
for each country: the ratio of unique introductions over the total number of 
unique persisting lineages and unique introductions between June 15th and 
August 15th, 2020 (p1), the ratio of descendant lineages from these unique 
introduction events over the total number of descendants circulating on 
August 15th, 2020 (p2), and the ratio of descendant taxa from these unique 
introductions over the total number of descendant taxa sampled after August 
15th, 2020 (p3) (cfr. Extended Data Figure 4). The dot sizes are proportional to: 
(1) the total number of unique lineage introductions identified between June 
15th and August 15th, 2020, (2) the total number of lineages inferred on August 
15th, 2020, and (3) the total number of descendant tips after August 15th, 2020.
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Fig. 3 | Phylogeographic estimates of SARS-CoV-2 spread in 10 European 
countries. The tree on the left represents the maximum clade credibility tree 
summary of the Bayesian inference. Colours correspond to the countries in the 
legend. The two clades corresponding to B1.160/20A.EU2 and B1.177/20A.EU1 
are highlighted in grey. The circular migration flow plots for these variants are 
based on the posterior expectations of the Markov jumps. In these plots, 

migration flow out of a particular location starts close to the outer ring and 
ends with an arrowhead more distant from the destination location. For 
B1.177/20A.EU1, we also summarize phylogeographic transitions as posterior 
mean estimates with 95% HPD intervals over time for four types of Markov 
jumps: i) from Spain to the UK, ii) from Spain to other countries, iii) from the 
UK, and iv) from other countries.
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Methods

Sequence data and subsampling
We used a two-step genome data collection procedure. We first evalu-
ated the available genomes from European countries in GISAID16 on 
November 3rd, 2020. We selected genomes from Belgium, France, Ger-
many, Italy, Netherlands, Norway, Portugal, Spain, Switzerland and the 
UK primarily based on the availability of genome data from both the 
first and second wave at that time but also because of their high ratio 
of genomes to positive cases. A total of 39,812 genomes were avail-
able for these countries on November 3rd, 2020; the available number 
of genomes by country are listed in Extended Data Table 1. Portugal 
represented an exception because data for this country were limited 
to the first wave at that time, but we included genomes from Portugal 
because of its potential importance as a summer travel location.

We aligned the genomes from each country using MAFFT v7.45317 
and trimmed the 5′ and 3′ ends and only retained unique sequences 
from each location. To further mitigate the disparities in sampling, we 
subsampled each country proportionally to the cumulative number 
of cases on October 21st (the most recently sampled sequence at the 
time) by setting an arbitrary threshold of 6.5 sequences per 10,000 
cases, with a minimum number of 100 sequences per country. To maxi-
mize the temporal and spatial coverage in each country, we binned 
genomes by epi-week and sampled as evenly as possible, sampling from 
a different region within the country when available. Only sequences 
from the B.1 lineage with the D614G mutation and exact sampling dates 
were selected for the analyses. From the final aligned sequence set, we 
removed 12 potential outliers, based on a root-to-tip regression apply-
ing TempEst v1.5.318 to a maximum-likelihood tree inferred with IQTREE 
v2.0.319, yielding a data set of 2,909 genomes (Extended Data Table 1).

Because of the nature of genome sequence accumulation, fewer 
recently sampled genomes were available for most countries on Novem-
ber 3rd (relative to the case counts at this time). Because our primary 
goal was to assess the persistence and introduction of lineages leading 
up to the second wave, we sought to augment our data set with more 
recent genomes, having already performed analyses on the initial data 
set. In the section on Bayesian evolutionary reconstructions, we outline 
how we update these analyses accordingly. On January 5th, 2021, we 
updated our dataset by adding over 1,000 non-identical sequences 
collected between August 1st and October 31st (out of a total of 56,395 
available genomes; the available and selected number of genomes by 
country are listed in Extended Data Table 1). For Portugal, we extended 
this period back to June 22nd (the most recent sampling date for the 
previous Portuguese selection). We downloaded all new B.1 sequences 
with the D614G mutation collected during the selected time period 
from GISAID and performed the following subsampling. The number 
of genomes to add by country was obtained by raising the threshold 
ratio of sequences/cases to 8.5 and increasing the minimum number 
of sequences to 200. To bias the temporal coverage towards more 
recent samples, the genomes from each country were binned by week 
and sampled such that the number of sequences added by week was 
proportional to an exponential function of the form et /4, where t=0 
represents August 1st and t=13 is October 31st. For Portugal, we did not 
use this preferential sampling as we needed to include close to all avail-
able genomes to raise the number of genomes to 200. The selected 
sequences were deduplicated and outliers were removed as described 
in the previous section. With the additional selection of 1,050 genomes, 
we arrived at a data set of 3,959 genomes (Extended Data Table 1).

Mobility data
We analysed four different mobility/connectivity measures: air traf-
fic flows, a social connectedness index provided by Facebook, as well 
as aggregate Facebook20 and Google international mobility data. 
Air traffic flow data were obtained from the International Air Trans-
port Association (http://www.iata.org) and based on the number of 

origin-destination tickets while also taking into account connections 
at intermediate airports21. We used monthly air traffic data between 
the 10 European countries under investigation for the time period 
between January 2020 and October 2020. The social connectedness 
index (SCI) is an anonymized snapshot of active Facebook users and 
their friendship networks to measure the intensity of social connect-
edness between countries (https://data.humdata.org/)22. In practice, 
the SCI measures the relative probability of a Facebook friendship link 
between two users of the application in different countries. We used 
the SCI calculated for the 10 European countries represented in our 
genomic sample as of August 2020.

The Google COVID-19 Aggregated Mobility Research Dataset con-
tains anonymized mobility flows aggregated over users who have 
turned on the Location History setting (on a range of platforms23), which 
is off by default. To produce this dataset, machine learning is applied to 
logs data to automatically segment it into semantic trips24. To provide 
strong privacy guarantees, all trips were anonymized and aggregated 
using a differentially private mechanism25 to aggregate flows over time 
(see https://policies.google.com/technologies/anonymization). This 
research was done on the resulting heavily aggregated and differentially 
private data. No individual user data was ever manually inspected, 
only heavily aggregated flows of large populations were handled. All 
anonymized trips were processed in aggregate to extract their origin 
and destination location and time. For example, if users traveled from 
location a to location b within time interval t, the corresponding cell  
(a, b, t) in the tensor would be n ± η, where η is Laplacian noise. The auto-
mated Laplace mechanism adds random noise drawn from a zero-mean 
Laplace distribution and yields (□, δ)-differential privacy guarantee of 
□ = 0.66 and δ = 2.1 × 10−29 per metric. The parameter □ controls the 
noise intensity in terms of its variance, while δ represents the devia-
tion from pure □-privacy. The closer they are to zero, the stronger the 
privacy guarantees. We used aggregated mobility flows between the 
10 European countries and summarized them by two-week or monthly 
time periods between January 2020 and October 2020.

Finally, we also considered international mobility data from Face-
book mobility data as an alternative to Google mobility data. These 
data are based on numbers of Facebook users moving over large dis-
tances, like air or train travel. Counts of international travel patterns 
are updated daily based only on users who have opted to share precise 
location data from their device with the Facebook mobile app through 
location services. Also in this case, we used aggregated mobility flows 
between the 10 European countries and summarized them by month 
between January 2020 and October 2020. Because international aggre-
gate mobility data obtained from Google and Facebook are highly 
correlated (monthly Spearman correlation ranging from 0.84 to 0.92; 
Supplementary Figure 1), we only included the Google aggregate mobil-
ity data as a covariate in the phylogeographic analyses. We note that 
the mobility data are subject to limitations as these may not be rep-
resentative for the population as whole and their representativeness 
may vary by location.

Bayesian evolutionary reconstructions
- Joint sequence-trait inference with a time-homogeneous GLM 
diffusion model. We performed Bayesian evolutionary reconstruction 
of timed phylogeographic history using BEAST 1.1026 incorporating ge-
nome sequences, their country and date of sampling, epidemiological 
and mobility/connectivity data. Because of the relatively low degree of 
resolution offered by the sequence data, our full probabilistic model 
specification focuses on i) relatively simple model specifications and 
ii) informing parameters by additional non-genetic data sources. We 
modeled sequence evolution using an HKY85 nucleotide substitution 
model with gamma-distributed rate variation among sites and a strict 
molecular clock model. Our genome set includes three genomes from 
an early outbreak in Bavaria, which was caused by an independent in-
troduction from China27,28. We therefore constrained these genomes as 
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an outgroup in the analysis, which according to root-to-tip regression 
plots as a function of sampling time resulted in a better correlation 
coefficient/R2 compared to the best-fitting root under the heuristic 
mean residual squared criterion (Supplementary Figure 2)18.

As a coalescent tree prior, we modeled the effective population size 
trajectory as a piecewise constant function that changes values at 
pre-specified times (following29), with log population sizes modelled as 
a deterministic function of log COVID-19 case counts (following30). This 
reduces the nonparametric skygrid parameterization to a generalized 
linear model (GLM) formulation with an estimable regression intercept 
(α) and coefficient (β). In this parameterization, a coefficient estimate 
centered around 0 would imply constant population size dynamics 
through time. We specified two-week intervals and summarized as 
a covariate the total case counts over these time intervals for the 10 
countries of sampling (obtained from https://www.ecdc.europa.eu/
en/covid-19/data). The earliest interval with non-zero cases counts was 
from 2020-01-14 to 2020-01-28; before 2020-01-14, the log-transformed 
and standardized case count covariate was set to the equivalent of 1 
case. We also tested whether a lag-time was required for the case count 
covariate using marginal likelihood estimation (MLE)31. Specifically, 
we shifted the case counts by 1, 2, 3 and 4 weeks before summarizing 
them according to two-week intervals and estimated the model fit of 
these covariates against case counts without lag time (Supplementary 
Table 1). To mitigate the computational burden associated with the 
MLE procedure, we performed these analyses on a subset of 1,000 
genomes (obtained using the Phylogenetic Diversity Analyzer tool32). 
We estimated the highest (log) marginal likelihood for a two-week lag 
time (Supplementary Table 1) and used this for the case count covari-
ate in our analyses.

Similar to sequence evolution, we modelled the process of transition-
ing through discrete location states (countries of sampling) according 
to a continuous-time Markov chain (CTMC)33. We employed a param-
eterization that models the log transition rates as a log linear function 
of mobility/connectivity covariates10. The Bayesian implementation of 
this model simultaneously estimates phylogenetic history, ancestral 
movement and the contribution of covariates to the movement pat-
terns10. While we mainly use this approach to obtain well-informed 
phylodynamic estimates, we also make use of its capacity to identify 
the most relevant mobility measure to inform our reconstructions. 
As covariates we considered Facebook’s SCI, air transportation data 
and mobility data. For the two time-variable mobility measures, we 
used the average of the log-transformed and standardized monthly 
mobility measures as a single covariate in our time-homogeneous 
phylogeographic GLM model. In this GLM formulation, we estimate 
positive effect sizes for each covariate as well as their inclusion prob-
ability through a spike-and-slab procedure10. Although we subsampled 
the number of SARS-CoV-2 genomes by country in proportion to case 
counts, they do not fully correspond because we used a minimum num-
ber of genomes for countries with low case counts. We therefore evalu-
ated whether this resulted in signal for sampling bias by including an 
origin and destination covariate in the GLM based on the residuals for 
a regression analysis between genomes and case counts (following14). 
We performed this analysis using a set of empirical trees (cfr. below) 
applying both a time-homogeneous and time-inhomogeneous model, 
but found no support for these additional covariates (Supplementary 
Table 2).

We performed inference under the full model specification using 
Markov chain Monte Carlo (MCMC) sampling and used the BEAGLE 
library v334 to increase computational performance. We specified 
standard transition kernels on all parameters, except for the regres-
sion coefficients of the piecewise-constant coalescent GLM model. 
For these parameters, we implemented new Hamiltonian Monte Carlo 
(HMC) transition kernels to improve sampling efficiency. These ker-
nels use principles from Hamiltonian dynamics and their approximate 
energy conserving properties to reduce correlation between successive 

sampled states, but require computation of the gradient of the model 
log-posterior with respect to the parameters of interest, in addition 
to efficient evaluation of the log-posterior that BEAGLE provides. To 
accomplish this, we extended our previous analytic derivation of the 
gradient of the log-density from the skygrid coalescent model with 
respect to the log-population-sizes35 to now be with respect to the 
regression coefficients using the chain rule and their regression design 
matrix.

Due to the data set size, MCMC burn-in takes up considerable 
computational time. We therefore iterated through a series of BEAST 
inferences, initially only considering sequence evolution and sub-
sequently adding the location data, to arrive at a tree distribution 
from which trees were taken as starting trees in our final analyses. 
The latter was composed of multiple independent MCMC runs that 
were run sufficiently long to ensure that their combined posterior 
samples achieved effective sample sizes (ESSs) larger than 100 for all 
continuous parameters.

- Data augmentation through online BEAST. As we updated our data-
set following initial analyses of the 2,909 genome collection using the 
approach discussed in the previous subsection, we sought to capital-
ize on these efforts to limit the burn-in for subsequent analyses of the 
3,959 dataset. Specifically, we adopted the distance-based procedure 
to insert new taxa into a time-measured phylogenetic tree sample as 
implemented in the BEAST framework for online inference36. We sub-
sequently use the augmented tree as the starting tree for the analyses 
of the updated dataset.

- Time-inhomogeneous reconstructions. To accommodate the 
time-variability of the mobility measures, we constructed epoch model 
extensions of the discrete phylogeography approach that allow speci-
fying arbitrary intervals over the evolutionary history and associating 
them with different model parameterizations37. As a complement to 
testing covariates of spatial diffusion using a time-homogeneous mod-
el, we used the epoch extension to specify monthly intervals allowing us 
to incorporate monthly mobility matrices (air transportation data were 
only available as monthly numbers), but assuming time-homogeneous 
effect sizes and inclusion probabilities. Monthly covariates were again 
log-transformed and standardized after adding a pseudo-count to each 
entry in the monthly matrices.

In addition, we performed another analysis in which we relaxed the 
constant-through-time inclusion probability of the covariates. In this 
model specification, each interval is associated with a specific set of 
indicator variables to represent the inclusion/exclusion of covariates, 
but we pool information about predictor inclusion across the intervals 
using hierarchical graph modelling38. This approach uses a set of indi-
cator variables to model covariate inclusion at the hierarchical level 
but allows interval-specific inclusion or predictors to diverge from 
the hierarchical level with a non-zero probability (with the number of 
differences modelled as a binomial distribution38), which was set to 
0.10 in our case. We estimated hierarchical and interval-level inclusion 
using spike-and-slab38.

Finally, we performed an analysis using the time-inhomogeneous 
model in which the interval-specific transition rates are modelled as 
a function of the single covariate that is supported by the analyses 
above leveraging aggregate mobility. We incorporated more variability 
through time by specifying two-week intervals (similar to the coalescent 
GLM interval specification). In addition, we add time-homogeneous 
random effects to the phylogeographic transition rate parameteriza-
tion in order to account for potential biases in the ability of mobility 
to predict phylogeographic spread. While posterior mean estimates 
for these random effects vary, only very few indicate that individual 
phylogeographic transition rates significantly deviate from the 
mobility data (Supplementary Figure 3). The time-inhomogeneous 
GLM approach we employ allows modelling relative differences in 
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transition rates, but also the overall rate of migration between coun-
tries varies through time, and importantly, this is strongly impacted by 
intervention strategies. To accommodate these dynamics, we further 
extended this model by incorporating a time-inhomogeneous overall 
CTMC rate scaler and parameterize it as a log linear function of the 
total monthly between-country log-transformed and standardized 
mobility (time-variable rate scalar GLM in Extended Data Table 2). To 
generate realisations of the discrete location CTMC process and obtain 
estimates of the transitions (Markov jumps) between states under this 
model, we employed posterior inference of the complete Markov jump 
history through time10,39.

While the epoch model allows us to flexibly accommodate 
time-variable spatial dynamics, it considerably increases the com-
putational burden associated with likelihood evaluations. In order 
to efficiently draw inference under this model for our large data set, 
we fit the time-inhomogeneous spatial diffusion process to a set of 
trees inferred under the time-homogeneous GLM diffusion model 
described above. Although likelihood evaluations remain computation-
ally expensive, even with the speed-up offered by GPU computation 
with BEAGLE, eliminating simultaneous tree estimation tremendously 
reduces parameter-space, requiring only modest MCMC chain lengths 
to adequately explore it. Model and inference specifications for the 
different analyses are available as BEAST XML input files40.

- Posterior Summaries. We assessed MCMC mixing (e.g. using ESSs) 
and summarized continuous parameter estimates using Tracer v1.7.141. 
Credible intervals were computed as 95% HPD intervals. Trees were visu-
alized using FigTree v1.4.4 (available at https://github.com/rambaut/
figtree/releases). In terms of phylogeographic estimates, we mainly 
focused on i) transitions to each location and from each location (based 
on Markov jump estimates) instead of pairwise transitions, ii) ratios of 
these transitions and iii) how these transitions structured transmission 
chains in individual countries. Transitions to each and from each loca-
tion avoid drawing conclusions about direct migration between coun-
tries, which can be tenuous given the incomplete genomes coverage of 
Europe, while their ratios avoid using absolute numbers of transitions, 
which are highly sample-dependent. Phylogeographic inference is 
limited to reconstructing the transitions in the ancestral history of a 
sample of sequences, which will only be a small fraction of the actual 
migration events especially when these events result in insufficient 
onward transmission to be captured in our limited sample. In addition, 
SARS-CoV-2 genome data can be poorly resolved and identical genomes 
in different locations are consistent with hypotheses that involve both a 
sparse and a rich number of virus flows between these locations. As the 
data hold little information to distinguish these hypotheses, we only 
consider sparse scenario’s by including only unique sequences for each 
location. A joint inference of sequence evolution and discrete spatial 
diffusion would err on the side of sparse hypotheses anyway because 
it will tend to cluster identical sequences that share a location. Despite 
the general underestimation of spatial dispersal, a phylogeographic 
inference is still likely to capture the transition events with important 
onward transmission, and evaluating the importance of such events 
relative to persistence is a major focus of this study. Cryptic transmis-
sion also complicates the ability to reconstruct spatial dispersal, but 
we expect this to be equally likely for introductions and persistence 
and therefore focus on their ratio for each location.

We provide three new tree sample tools in the BEAST codebase avail-
able at https://github.com/beast-dev/beast-mcmc) to obtain posterior 
summaries of location transition histories using posterior tree distribu-
tions annotated with Markov jumps:
•	TreeMarkovJumpHistoryAnalyzer allows collecting Markov jumps 

and their timings from a posterior tree distribution annotated with 
Markov jumps histories in a .csv file for further analyses.

•	TreeStateTimeSummarizer decomposes the total tree time into the 
times associated with contiguous partitions of a tree estimated to be 

in a particular location state, with the partitions determined by the 
Markov jumps. An arbitrary lower- and upper-time boundary can be 
specified to restrict the summary to a particular time interval in the 
evolutionary history. We use the time estimates for the separate parti-
tions associated with each state to calculate an entropy measure that 
summarizes the genetic make-up of country-specific transmission 
chains. Specifically, we use for each location a normalized Shannon 
entropy:

∑ln n
p p−

1
( )

ln( ), (1)
i

n

i i

where pi is the proportion of time associated with that location for 
partition i of a phylogeographic tree and n represents the number of 
partitions for that location in the tree.

•	PersistenceSummarizer also uses posterior tree distributions anno-
tated with Markov jumps to summarize the number of lineages at a 
particular point in time (evaluation time, Te, cfr. Extended Figure 5), 
which location states they are associated with, since what time point 
in the past they have maintained that state and how many sampled 
descendants they have after time Te (Extended Figure 5). In addi-
tion, it allows summarizing how long these lineages have circulated 
independently prior to Te, so before sharing common ancestry with 
other lineages that maintained the same location state. This informa-
tion allows us to determine how many lineages are circulating at Te 
that stem either from a unique persistent lineage (maintaining the 
same location states) or unique introduction event since a particular 
time prior to Te (Ta in Extended Figure 5). The association between 
incidence and the difference in the logit proportion of unique intro-
ductions and the logit proportion of their descendants on August 
15th was evaluated using a p-value obtained by a linear regression  
analysis.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
BEAST XML input files are available at https://github.com/phylogeog-
raphy/SARS-CoV-2_EUR_PHYLOGEOGRAPHY (https://doi.org/10.5281/
zenodo.4876442). The SARS-CoV-2 genome data required for running 
these XML files can be downloaded from https://www.gisaid.org; all 
GISAID accession numbers are listed in the GISAID acknowledgments 
table (Supplementary Table 3).

The Google COVID-19 Aggregated Mobility Research Dataset and 
the Facebook mobility data are not publicly available owing to strin-
gent licensing agreements. Information on the process of requesting 
access to the Google mobility data is available from A.S. (sadilekadam@
google.com) and the COVID-19 Community Mobility Reports that were 
derived from the Google data are publicly available at https://www.
google.com/covid19/mobility/. The Facebook mobility data are made 
available through the Data for Good program (https://dataforgood.
fb.com) under the terms of a data license agreement which defines 
the allowed terms of use by partners (contact: disastermaps@fb.com). 
Once a partner institution’s request for access is vetted and an appropri-
ate data license agreement is signed, then access is granted through a 
Facebook’s web-based spatial visualization tool called GeoInsight. Air 
travel data were obtained from the International Air Transport Associa-
tion (http://www.iata.org).

Log-transformed and standardized among country mobility and air 
travel data are specified in the available XML files. COVID-19 incidence 
data was obtained from https://www.ecdc.europa.eu/en/covid-19/data.

Article

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

https://github.com/rambaut/figtree/releases
https://github.com/rambaut/figtree/releases
https://github.com/beast-dev/beast-mcmc
https://github.com/phylogeography/SARS-CoV-2_EUR_PHYLOGEOGRAPHY
https://github.com/phylogeography/SARS-CoV-2_EUR_PHYLOGEOGRAPHY
https://doi.org/10.5281/zenodo.4876442
https://doi.org/10.5281/zenodo.4876442
https://www.gisaid.org
http://sadilekadam@google.com
http://sadilekadam@google.com
https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://dataforgood.fb.com
https://dataforgood.fb.com
http://www.iata.org
https://www.ecdc.europa.eu/en/covid-19/data


Code availability
The code for running BEAST analyses is available in the hmc_develop 
branch of the BEAST codebase available at https://github.com/
beast-dev/beast-mcmc (https://doi.org/10.5281/zenodo.4895235). 
The tools TreeMarkovJumpHistoryAnalyzer, TreeStateTimeSummarizer 
and PersistenceSummarizer are available from the master branch in 
the same codebase.
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(a) Interna�onal air traffic data

(b) Interna�onal Facebook mobility data (and SCI)

(c) Interna�onal Google mobility data

Facebook SCI

Extended Data Fig. 1 | Monthly international mobility data matrices: international air traffic data (a), international Facebook mobility data (b), and 
international Google mobility data (c). For Facebook data, we also report the single social connectedness index matrix (SCI, b).
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Extended Data Fig. 2 | Estimated introductions through time in the 10 
European countries and circular migration flow plots summarizing the 
estimated transitions between the countries for different time intervals 
throughout the SARS-CoV-2 evolutionary history. (a) The introductions 
through time serve as an illustration and are based on the Markov jump history 
in the MCC tree. We note that the posterior distribution of trees is 
accompanied with considerable uncertainty about the location of origin, 

destination and timing of the transitions, which is difficult to appropriately 
visualize. The grey box represents the time period from June 15th to August 15th. 
(b) The circular migration flow plots are based on the posterior expectations of 
the Markov jumps. The sizes of the plots reflect the total number of transitions 
for each period. In these plots, migration flow out of a particular location starts 
close to the outer ring and ends with an arrowhead more distant from the 
destination location.
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Extended Data Fig. 3 | Pairwise mobility data among the 10 countries included in the phylogeographic analysis and other European countries. Heatmap 
cells are coloured according to international Google mobility data for the time period between January and October 2020.

Article

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  



Ta

other location persistent lineage

decendants from persistent lineage, post Te

introduction

decendants from introduction, post Te

Te

Extended Data Fig. 4 | Conceptual representation of persistent lineages 
and introductions during the time interval delineated by the evaluation 
time (Te) and the ancestral time (Ta). At Te, we evaluate how many lineages are 
circulating in the location of interest, in this case 12 (lineages in other locations 
are represented by thick grey branches). We subsequently identify whether 
these lineages maintained this location up to Ta in their ancestry or whether 
they result from an introduction event in the time interval of interest. By 
determining whether other lineages circulating in the location of interest at Te 

are descendants of the same persistent lineage or whether they share an 
introduction event, we identify the unique persistent lineages or 
introductions, in this case 2 and 4 respectively. In addition to the proportion of 
unique introductions (p1 = 4/6), we also summarize the proportion of their 
descendants at Te (p2 = 9/(9+3) in this case) and the proportion of their 
descendants in terms of sampled tips after Te (p3). Those tips are not shown 
here but conceptually represented for both introductions and persistent 
lineages by ovals.
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Extended Data Fig. 5 | Scatter plots of the difference in the logit proportion 
of unique introductions (p1) and the logit proportion of their descendants 
on August 15th (p2) against incidence and the difference in the logit 
proportion of unique introductions and the logit proportion of 
descendant tips after August 15th (p3) against incidence. Both plots are 

shown for the period between April 15th and June 15th, for the period between 
June 15th and August 15th, and for the period between August 15th and October 
15th, respectively. The p-values in the lower right corner of the plots are the 
p-values for the hypothesis tests based on the t-statistic evaluating whether the 
regression coefficient in a linear regression model is different from 0.
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Extended Data Fig. 6 | Estimated geographic origin of viral influx over the summer ( June 15th - August 15th, 2020) in each country. Each bar plot summarizes 
the posterior Markov jump estimates into a specific country. For the bar representing a low number of introductions into Portugal, a magnified view is provided.
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Extended Data Fig. 7 | Phylogeographic transitions for lineages 
B1.1777/20A.EU1 and B1.160/20A.EU2. Cumulative phylogeographic 
transitions are summarized as posterior mean estimates with 95% HPD 
intervals over time for four types of Markov jumps. For B1.1777/20A.EU1: i)  

from Spain to the UK, ii) from Spain to other countries, iii) from the UK, and iv) 
from other countries; For B1.160/20A.EU2: i) from France to the UK, ii) from 
France to other countries, iii) from the UK, and iv) from other countries.
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Extended Data Table 1 | Genome sampling by country, collected on November 3rd, 2020, and updated on January 5th, 2021

The numbers in between brackets represent the number of available genomes that were subsampled. *For Portugal, almost all available genomes were included to increase the number of 
genomes to 200.
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Extended Data Table 2 | Parameter estimates for the various Bayesian time-measured phylogeographic models applied to 
the SARS-CoV-2 genome data set

The coalescent generalized linear model (GLM) parameterizes bi-weekly effective population sizes as a log-linear function of COVID-19 incidence data, with α and β representing the log 
intercept and log regression coefficient. In the time-inhomogeneous spatial diffusion models, no coalescent prior was used as these models were fitted onto posterior trees inferred from the 
time-homogeneous model (cfr. Methods). For the spatial GLM model, we report inclusion probability estimates through the expectations of the boolean indicators (δ) associated with each pre-
dictor and log conditional effect sizes (the regression coefficient conditional on the predictor being included in the model, β(|δ=1)). SCI = Social Connectedness Index, based on Facebook data. 
For the model with time-variable inclusion probabilities, we report the parameters at the hierarchical level (δh and β|δh, cfr. Methods). In the model with a time-variable rate scalar, we parameter-
ize this rate scalar as a log-linear function of the overall between-country mobility, with α and β representing the log intercept and log regression coefficient. 
Using a time-homogeneous model of spatial diffusion, we estimate a maximum inclusion probability for the mobility data whereas air transportation data and SCI offer no predictive value. We 
also estimate a strong positive association between viral population size change through time and COVID-19 incidence in the coalescent GLM. We further confirm the support for the mobility 
covariate in a time-inhomogeneous spatial model that incorporates monthly mobility measures, with either constant or time-variable inclusion probabilities. In addition to parameterizing the 
relative rates of spread between countries according to this covariate, we extend our time-inhomogeneous approach to also model bi-weekly variation in the overall rate of spread between 
countries as a function of mobility measures (time-variable rate scalar GLM). This approach estimates a positive association between the overall rate of spatial spread and mobility data.
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Extended Data Table 3 | Mobility to or from each country within our 10-country sample as the percentage of the total 
between-country mobility for these countries within Europe

The pairwise mobility measures summarized in this table are shown in Extended Data Figure 3.
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