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Following the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced
aresurgence of the virus starting in late summer 2020 that was deadlierand more
difficult to contain’. Relaxed intervention measures and summer travel have been
implicated as drivers of the second wave?. Here, we build aphylogeographic model to
evaluate how newly introduced lineages, as opposed to the rekindling of persistent
lineages, contributed to the COVID-19 resurgence in Europe. We inform this model
using genomic, mobility and epidemiological data from10 European countries and
estimate thatin many countries over half of the lineages circulating in late summer
resulted from new introductions since June 15", The success in onward transmission
of newlyintroduced lineages was negatively associated with local COVID-19 incidence
during this period. The pervasive spread of variants in summer 2020 highlights the
threat of viral dissemination whenrestrictions are lifted, and this needs to be carefully
considered by strategiesto control the current spread of variants that are more
transmissible and/or evade immunity. Our findings indicate that more effective and
coordinated measuresare required to contain spread through cross-border travel
even as vaccinationbegins to reduce disease burden.

Upon successfully curbing transmission in spring 2020, many Euro-
pean countries witnessed a resurgence in COVID-19 cases in late sum-
mer. The number of COVID-19 infections increased rapidly,and by the
end of October, it was clear that the continent was deepinto asecond
epidemicwave. This forced governmentsto reimpose lockdowns and
social restrictions in an effort to contain the resurgence. While these
measures reduced infection rates across Europe?, several countries
witnessed a stabilization at high levels or evenanew surge ininfections.
Thespread of more transmissible variants, in particular B.1.1.7 (Variant
of Concern202012/01 or 201/501Y.V1*), which was firstidentified in the
United Kingdom (UK), has considerably exacerbated the challenge to
contain COVID-19.

Already early on in the pandemic, modelling studies warned about
new waves due to partial relaxation of restrictions’ or seasonal varia-
tions®. By mid-April, the European Commission constructed a road-
map to lifting coronavirus containment measures’, recommending
a cautious and coordinated manner to revive social and economic
activities. However, the early start of the devastating second wave
demonstrated that there was insufficient adherence to these measured

recommendations. Cross-border travel, and mass tourismin particular,
hasbeenimplicated asamajorinstigator of the second wave. Genomic
surveillance demonstrated that a new variant (lineage B.1.177%, 20A.EUL
[nextstrain.org]), which emerged in Spainin early summer, has spread
to multiple locations in Europe?. While this variant quickly grew into
the dominant circulating SARS-CoV-2 strainin several countries, it did
notappear to be associated with a higher intrinsic transmissibility
Althoughitappears clear that travel significantly contributed to the
second wave in Europe, it remains challenging to assess how it may have
restructured and reignited the epidemicin the different European coun-
tries. Even without resuming travel, relaxing containment measures
when low-level transmission is ongoing risks the proliferation of locally
circulating strains. Phylodynamic analyses may provide insights into
therelativeimportance of persistence versus the introduction of new
lineages, but such analyses are complicated for SARS-CoV-2 for different
reasons. Phylogenetic reconstructions may be poorly resolved due to
the relatively limited SARS-CoV-2 sequence diversity®. This is further
confounded by the degree of genetic mixing that canbe expected from
unrestricted travel prior to the lockdowns in spring 2020.
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Mobility data predicts SARS-CoV-2 spread

We analysed SARS-CoV-2B.1(20A) genomes from10 European countries
for which a minimal number of genomes from the second wave were
already available on November 3™,2020. Using a two-step procedure
that relied on subsampling relative to country-specific case counts
(cfr. Methods), we compiled a data set of close to 4,000 genomes
sampled between January 29™ and October 30%, 2020 (Extended Data
Table1). In order to achieve maximum resolution in our evolutionary
reconstructions, we constructed a Bayesian time-measured phylogeo-
graphic model thatintegrates mobility and epidemiological data. Our
approach simultaneously infers phylogenetic history and ancestral
movement throughout this history while also identifying the drivers
of spatial spread™. We used the latter functionality to determine the
most appropriate mobility or connectivity measure. Specifically, we
considered international air transportation data, the Google COVID-19
Aggregated Mobility Research Dataset (also referred to here as ‘mobility
data’ for short), as well as Facebook’s Social Connectedness Index (SCI),
as covariates of phylogeographic spread (Extended DataFigure1). The
Google mobility data contains anonymized mobility flows aggregated
over userswho have turned on the Location History setting, which is off
by default (cfr. Methods). The Social Connectedness Index reflects the
structure of social networks and has been suggested to correlate with
the geographicspread of COVID-19". To help inform the phylogenetic
coalescent time distribution, we parameterized the viral population
size trajectories through time as a function of epidemiological case
count data for the countries under investigation.

Analyses using both time-homogeneous and time-inhomogeneous
models offered strong support for mobility dataas a predictor of spatial
diffusion whereas air transportation dataand SCl offered no predictive
value (Extended Data Table 2). The fact that mobility dataencompass-
ing both air and land-based transport are required to explain COVID-
19 spread highlights the need to consider both types of transportin
containment strategies. To ensure that containment strategies were
accommodated by our reconstructions, we further extended our
time-inhomogeneous approach to model bi-weekly variation in the
overallrate of spread between countries as a function of mobility (cfr.
Methods, Extended Data Table 2).

Dynamic viral transmission through time

We use our probabilistic model of spatial spread informed by genomic
data, mobility and epidemiological data to characterize the dynam-
ics of spread throughout the epidemic in Europe. We first focus on
the ratio of introductions over the total viral flow in and out of each
country over time and the genetic structure of country-specific trans-
mission chains (Figure 1). For the latter, we use a normalized entropy
measure that quantifies the degree of phylogenetic interspersion of
country-specific transmission chains in the SARS-CoV-2 phylogeny
(cfr. Methods). Although estimates for individual dispersal between
pairs of countries can also be obtained (Extended Data Figure 2), we
remain cautious ininterpreting these as direct pathways of spread
because the genome sampling only covers arestricted set of European
countries. The mobility to/from each country within our 10-country
sample covers between 64% and 96% of the mobility of these countries
to/from all countries within Europe (Extended Data Table 3, Extended
DataFigure 3), except for Norway (27%), for which other Scandinavian
countries account for considerable mobility connections (61%), and
the UK (49%), for which Ireland accounts for alarge fraction of mobility
connections (38%).

Accordingtothe proportion of introductions, we estimate more viral
import than export events for Switzerland, Norway, the Netherlands
and Belgium throughout most of the time period under investigation.
According to the estimated phylogenetic entropy, these countries
also experienced many independent transmission chains since the
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epidemic started to unfold. This is consistent with country-specific
studies; for the first wave in Belgium for example, about 331 individual
introductions were estimated in the ancestry of a limited sample of
740 genomes'™. For Portugal, we also estimate higher proportions of
introductions early in the first wave but with a subsequent decline to
predominantly export events. France, Italy and Spain on the other
hand are characterized by arelatively high viral export during the first
wave. The proportion ofintroductions remained relatively low for Italy
and Spain following the first wave, while in France these proportions
were high from mid-June until the end of July. The absolute number
of transitions in our sample are however low during this time period.
These countries also had comparatively lower entropy valuesearly in
theepidemic, withanincrease for France by the start of summer and a
more gradualincrease over time for Italy. In Spain however, the genetic
complexity of SARS-CoV-2 transmission chains remained limited. Inthe
UK and Germany, the viral flow in and out of the country was initially
relatively balanced. Arecent large-scale genomicanalysis in the UK indi-
cates that this canimply very high absolute numbers of cross-country
transmissions, as more than 2,800 independent introduction events
were identified from the analysis of 26,181 genomes®. Although our
sample is limited compared to this analysis, our reconstructions also
recover major influx from Spain, France and Italy during the first
wave in the UK (Extended Data Figure 2). We estimate an increase in
the proportion of introductions for the UK from mid-June, indicat-
ing animportant viralimportrelative to export around this time. The
phylogenetic entropy also peaked around this time. In Germany, the
proportionsincreased somewhat later in summer with aconcomitant
rise in phylogenetic entropy.

Introductions thriveinlowincidence

To assesstheimpact of summer travel on the second wave in the differ-
ent countries, we use our genomic-mobility reconstruction to estimate
both the number of lineages persisting in each country and the number
of newly introduced lineages, and how these proliferated early in the
second wave. We focus on atwo-month time period between June 15%,
onwhich many EU and Schengen-area countries opened their borders
toother countries, and August 15", before which the majority of holiday
return travel is expected for many countries. We identify the number
of lineages circulating in each country on August 15", and determine
whether they result froma lineage that persisted since June 15" or from
aunique introduction after this date (independent of the number of
descendants for this lineage on August 15", Extended Data Figure 4).In
Figure2, we ploti) theratio of these unique introductions over the total
unique lineages (unique introductions and persisting lineages) (p,),
ii) the proportion of descendant lineages on August 15" that resulted
fromthe unique introductions over the total descendants circulating
on this date (p,), and iii) the proportion of descendant tips (sampled
genomes) after August 15™ that resulted from the unique introduc-
tions over the total number of descendant tips (p,, cfr. Methods and
Extended Data Figure 4). We estimate a posterior mean proportion
of unique introductions that is close to or higher than 0.5 except for
Spainand Portugal. Thisindicates that by August 15" arelatively large
fraction of circulating lineages in each country was spawned by new
introductions over summer. Because the B.1.177/20A.EUl variant that
was predominantly disseminated through summer travel does not
appear to be more transmissible?, this was unlikely due to intrinsic
advantages of the newly introduced viruses.

The two proportions of descendants from these introductions on
August 15" (p,) and after this date (p,) measure the relative success
of newly introduced lineages compared to persisting lineages, indi-
cating considerable variation in onward transmission. In Figure 2,
the country estimates are ordered according to decreasing average
incidence during theJune 15" - August 15" time period, suggesting that
incidence may shape the outcome of the introductions. In countries



that experienced relatively high summer incidence (e.g. Spain, Por-
tugal, Belgium and France), the introductions lead to comparatively
fewer descendants on August 15" or after. We find a significant overall
association between incidence and the difference in the logit-scaled
proportion of unique introductions and the logit-scaled proportion
of their descendants on August 15" (p = 0.007) as well as between
incidence and the difference in the logit-scaled proportion of unique
introductions and the logit-scaled proportion of descendant tips after
August 157 (p = 0.019, Extended Data Figure 5). With comparatively
few descendants fromintroductions (Figure 2), Norway may to some
extent be an outlier because lineages estimated as persisting in this
country could in fact be introductions from other Scandinavian
countries that are not represented in our genome sample. We recover
qualitatively similar, but more variable and statistically unsupported
associations between the success of introductions and incidence for
the two-month time periods before and after the June 15" - August 15"
time period (Extended Data Figure 5). Thisindicates that the compara-
tively higher proportion of introductions as well as the more stable
and lower incidence between June 15" and August 15" provided the
ideal conditions for a process of genetic drift by which introductions
were able to fuel transmission.

Our estimates show that introductions in the UK particularly ben-
efited from the conditions for successful onward transmission (Fig-
ure 2), witha considerable fraction of introductions originating from
Spain (Extended Data Figure 6) reflecting the spread of B.1.177/20A.EU1L
that rapidly became the most dominant strainin the UK2 Our analysis
captures the expansion of this variant as well as that of B.1.160/20A.EU2,
whichtogetheraccount for more than 25% of the genomes in our data
set. While Spain was indeed inferred to be the origin of B.1.177/20A.EU1,
the UK also considerably contributed to its spread (Figure 3). The earli-
estintroduction from Spain to the UK was estimated around the time
Spainopened most EUborders (June 21%, Figure 3). While introductions
from Spain to other countries soon followed, we estimate a similar rate
and amount of spread from the UK to other countries before these other
countries also further disseminated the virus. Althoughinferred from
alimited sample, this illustrates a dynamic pattern of spread and the
importance of the early establishment of B.1.177/20A.EU1 in the UK
thatlikely served as animportant secondary center of dissemination.
We note however that this pattern may be impacted by the intensive
and continuous genomic surveillance in the UK, which may also be
reflected in our subsample of the available data. While the UK is also
involvedinthespread of B1.160/20A.EU2, this variant has been largely
disseminated from France. The simple fact that this variant expanded
laterin France and subsequently also started to spread later compared
toB.1.177/20A.EU1 (Extended Data Figure 7) may explain why the latter
spread more successfully.

Discussion

Our Bayesian phylogeographic approach builds on a rich history of
identifying drivers of spatial spread, with applications to various path-
ogens at different spatial scales, ranging from air transportation for
influenzaat a global scale °'° to gravity model transmission for Ebola
in West Africa™. Such studies use a relatively limited genomic sam-
ple to gain insights into viral transmission dynamics. This is also the
caseinour application to SARS-CoV-2 in Europe for which we further
extend the phylodynamic dataintegration approach to confront the
lack of resolution offered by SARS-CoV-2 genomic data. A concerted
effortin containing international spread further sets apart the COVID-
19 pandemic from these earlier events. For this reason, we have now
incorporated variationin mobility over time to account for theimpact
ofthese measures. Our reconstructions show that the composition of
lineages circulating towards the end of the summer was to a signifi-
cant extent shaped by introductions in most of the European coun-
tries. The relative success of onward transmission of the introduced

lineages appears to be shaped by local COVID-19 incidence during
summer.

Our results should be interpreted in light of several important lim-
itations. In addition to a limited overall size, the genome data only
cover aselection of European countries, implying that we are missing
transmission events that involve unsampled countries. This may be
important for Norway for example, which according to our mobility
data, is largely connected to other Scandinavian countries. We also lack
sampling from eastern Europe, which was to a large extent spared by
border controls and lockdowns during the first wave, but witnessed
high excess mortality rates during the second wave. The emergence
of more transmissible variants has led to more intensified genomic
surveillance, so similar phylodynamic reconstructions may now be
performed on awider scale.

The pandemic exit strategy offered by vaccination programs is a
source of optimism that also sparked proposals by EU member states to
issue vaccine passportsinabid torevive travel and rekindle the econ-
omy. Inaddition toimplementation challenges andissues of fairness,
there arerisks associated with such strategies when immunization is
incomplete, as likely will be the case for the European population this
summer. A recent modelling study for the United Kingdom suggests
thatvaccinationinadults aloneis unlikely to completely halt the spread
of COVID-19 cases and that lifting containment measures early and
suddenly can lead to a large wave of infections®. A gradual release
of restrictions was shown to be critical for minimizing the infection
burden®. We believe that travel policies may be a key consideration
in this respect because similar conditions may arise as the ones we
demonstrated to provide fertile ground for viral dissemination and
resurgencein 2020. This may now also involve the spread of variants
that evade immune responses triggered by vaccines and previous
infections. Well-coordinated European strategies will therefore be
required to manage the spread of SARS-CoV-2 and reduce future waves
of infection, with hopefully amore unified implementation than hith-
erto observed.
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15" and August 15,2020, (2) the total number of lineages inferred on August
15™,2020, and (3) the total number of descendant tips after August 15, 2020.
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Fig.3|Phylogeographicestimates of SARS-CoV-2spreadin10 European
countries. The tree ontheleft represents the maximum clade credibility tree
summary of the Bayesian inference. Colours correspond to the countriesinthe
legend. The two clades corresponding to B1.160/20A.EU2 and B1.177/20A.EU1
are highlightedingrey. The circular migration flow plots for these variants are
based onthe posterior expectations of the Markov jumps. In these plots,
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migration flow out of a particular location starts close to the outer ring and
endswithanarrowhead more distant from the destination location. For
B1.177/20A.EU1, we also summarize phylogeographic transitions as posterior
mean estimates with 95% HPD intervals over time for four types of Markov
jumps: i) from Spain to the UK, ii) from Spain to other countries, iii) from the
UK, andiv) fromother countries.
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Methods

Sequence data and subsampling

We used atwo-step genome data collection procedure. Wefirst evalu-
ated the available genomes from European countries in GISAID™ on
November 3",2020. We selected genomes from Belgium, France, Ger-
many, Italy, Netherlands, Norway, Portugal, Spain, Switzerland and the
UK primarily based on the availability of genome data from both the
first and second wave at that time but also because of their high ratio
of genomes to positive cases. A total of 39,812 genomes were avail-
able for these countries on November 3", 2020; the available number
of genomes by country are listed in Extended Data Table 1. Portugal
represented an exception because data for this country were limited
tothe first wave at that time, but we included genomes from Portugal
because of its potential importance as asummer travel location.

We aligned the genomes from each country using MAFFT v7.453"
and trimmed the 5" and 3’ ends and only retained unique sequences
fromeachlocation. To further mitigate the disparities in sampling, we
subsampled each country proportionally to the cumulative number
of cases on October 21° (the most recently sampled sequence at the
time) by setting an arbitrary threshold of 6.5 sequences per 10,000
cases, withaminimum number of 100 sequences per country. To maxi-
mize the temporal and spatial coverage in each country, we binned
genomes by epi-week and sampled as evenly as possible, sampling from
adifferent region within the country when available. Only sequences
fromthe B.1lineage with the D614G mutation and exact sampling dates
were selected for the analyses. From the final aligned sequence set, we
removed 12 potential outliers, based onaroot-to-tip regression apply-
ing TempEst v1.5.3" toamaximum-likelihood tree inferred with IQTREE
v2.0.3%, yielding a data set of 2,909 genomes (Extended Data Table 1).

Because of the nature of genome sequence accumulation, fewer
recently sampled genomes were available for most countries on Novem-
ber 3" (relative to the case counts at this time). Because our primary
goal wasto assess the persistence and introduction of lineages leading
up to the second wave, we sought to augment our data set with more
recent genomes, having already performed analyses on the initial data
set.Inthe section on Bayesian evolutionary reconstructions, we outline
how we update these analyses accordingly. On January 57,2021, we
updated our dataset by adding over 1,000 non-identical sequences
collected between August 1* and October 31* (out of a total of 56,395
available genomes; the available and selected number of genomes by
country arelisted in Extended Data Table1). For Portugal, we extended
this period back to June 22™ (the most recent sampling date for the
previous Portuguese selection). Wedownloaded allnew B.1sequences
with the D614G mutation collected during the selected time period
from GISAID and performed the following subsampling. The number
of genomes to add by country was obtained by raising the threshold
ratio of sequences/cases to 8.5 and increasing the minimum number
of sequences to 200. To bias the temporal coverage towards more
recent samples, the genomesfrom each country were binned by week
and sampled such that the number of sequences added by week was
proportional to an exponential function of the form e*/*, where t=0
represents August 1°*and t=13 is October 31°*'. For Portugal, we did not
use this preferential sampling as we needed toinclude close to all avail-
able genomes to raise the number of genomes to 200. The selected
sequences were deduplicated and outliers were removed as described
inthe previous section. With the additional selection 0of 1,050 genomes,
we arrived at a data set of 3,959 genomes (Extended Data Table 1).

Mobility data

We analysed four different mobility/connectivity measures: air traf-
fic flows, a social connectedness index provided by Facebook, as well
as aggregate Facebook?® and Google international mobility data.
Air traffic flow data were obtained from the International Air Trans-
port Association (http://www.iata.org) and based on the number of

origin-destination tickets while also taking into account connections
at intermediate airports®. We used monthly air traffic data between
the 10 European countries under investigation for the time period
between January 2020 and October 2020. The social connectedness
index (SCI) is an anonymized snapshot of active Facebook users and
their friendship networks to measure the intensity of social connect-
edness between countries (https://data.humdata.org/)*. In practice,
the SCImeasures the relative probability of a Facebook friendship link
between two users of the application in different countries. We used
the SCI calculated for the 10 European countries represented inour
genomic sample as of August 2020.

The Google COVID-19 Aggregated Mobility Research Dataset con-
tains anonymized mobility flows aggregated over users who have
turned on the Location History setting (on a range of platforms?®), which
is off by default. To produce this dataset, machine learning is applied to
logs data to automatically segment it into semantic trips®. To provide
strong privacy guarantees, all trips were anonymized and aggregated
using a differentially private mechanism? to aggregate flows over time
(see https://policies.google.com/technologies/anonymization). This
researchwas done ontheresultingheavily aggregated and differentially
private data. No individual user data was ever manually inspected,
only heavily aggregated flows of large populations were handled. All
anonymized trips were processed inaggregate to extract their origin
and destination location and time. For example, if users traveled from
location a to location b within time interval ¢, the corresponding cell
(a,b,t)inthetensor wouldbe n+n, where nis Laplacian noise. The auto-
mated Laplace mechanism adds random noise drawn fromazero-mean
Laplace distribution andyields (], 6)-differential privacy guarantee of
[0=0.66and 6 = 2.1 x10-29 per metric. The parameter []controls the
noise intensity in terms of its variance, while 6 represents the devia-
tion from pure[J-privacy. The closer they are to zero, the stronger the
privacy guarantees. We used aggregated mobility flows between the
10 European countries and summarized them by two-week or monthly
time periods between January 2020 and October 2020.

Finally, we also considered international mobility data from Face-
book mobility data as an alternative to Google mobility data. These
data are based on numbers of Facebook users moving over large dis-
tances, like air or train travel. Counts of international travel patterns
areupdated daily based only on users who have opted to share precise
location data from their device with the Facebook mobile app through
location services. Alsointhis case, we used aggregated mobility flows
between the 10 European countries and summarized them by month
betweenJanuary 2020 and October 2020. Because international aggre-
gate mobility data obtained from Google and Facebook are highly
correlated (monthly Spearman correlation ranging from 0.84 t0 0.92;
Supplementary Figure1), we only included the Google aggregate mobil-
ity data as a covariate in the phylogeographic analyses. We note that
the mobility data are subject to limitations as these may not be rep-
resentative for the population as whole and their representativeness
may vary by location.

Bayesian evolutionary reconstructions

- Joint sequence-trait inference with a time-homogeneous GLM
diffusion model. We performed Bayesian evolutionary reconstruction
oftimed phylogeographic history using BEAST 1.10%* incorporating ge-
nome sequences, their country and date of sampling, epidemiological
and mobility/connectivity data. Because of the relatively low degree of
resolution offered by the sequence data, our full probabilistic model
specification focuses on i) relatively simple model specifications and
i) informing parameters by additional non-genetic data sources. We
modeled sequence evolution using an HKY85 nucleotide substitution
model with gamma-distributed rate variationamong sites and a strict
molecular clockmodel. Our genome setincludes three genomes from
an early outbreak in Bavaria, which was caused by anindependent in-
troduction from China®?%, We therefore constrained these genomes as
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anoutgroupin the analysis, which according to root-to-tip regression
plots as a function of sampling time resulted in a better correlation
coefficient/R? compared to the best-fitting root under the heuristic
mean residual squared criterion (Supplementary Figure 2)'8.

Asacoalescenttree prior, we modeled the effective population size
trajectory as a piecewise constant function that changes values at
pre-specified times (following®), with log population sizes modelled as
adeterministic function of log COVID-19 case counts (following®). This
reduces the nonparametric skygrid parameterizationto ageneralized
linear model (GLM) formulation withan estimable regressionintercept
(o) and coefficient (B). In this parameterization, a coefficient estimate
centered around O would imply constant population size dynamics
through time. We specified two-week intervals and summarized as
a covariate the total case counts over these time intervals for the 10
countries of sampling (obtained from https://www.ecdc.europa.eu/
en/covid-19/data). The earliest interval with non-zero cases counts was
from2020-01-14 t02020-01-28; before 2020-01-14, the log-transformed
and standardized case count covariate was set to the equivalent of 1
case. Wealsotested whether alag-time was required for the case count
covariate using marginal likelihood estimation (MLE). Specifically,
we shifted the case counts by 1,2, 3 and 4 weeks before summarizing
them according to two-week intervals and estimated the model fit of
these covariates against case counts without lag time (Supplementary
Table 1). To mitigate the computational burden associated with the
MLE procedure, we performed these analyses on a subset of 1,000
genomes (obtained using the Phylogenetic Diversity Analyzer tool*).
We estimated the highest (log) marginal likelihood for atwo-week lag
time (Supplementary Table 1) and used this for the case count covari-
ateinour analyses.

Similar to sequence evolution, we modelled the process of transition-
ingthrough discrete location states (countries of sampling) according
to a continuous-time Markov chain (CTMC)*. We employed a param-
eterization that models the log transition ratesas aloglinear function
of mobility/connectivity covariates'. The Bayesian implementation of
this model simultaneously estimates phylogenetic history, ancestral
movement and the contribution of covariates to the movement pat-
terns'®. While we mainly use this approach to obtain well-informed
phylodynamic estimates, we also make use of its capacity to identify
the most relevant mobility measure to inform our reconstructions.
As covariates we considered Facebook’s SCI, air transportation data
and mobility data. For the two time-variable mobility measures, we
used the average of the log-transformed and standardized monthly
mobility measures as a single covariate in our time-homogeneous
phylogeographic GLM model. In this GLM formulation, we estimate
positive effect sizes for each covariate as well as their inclusion prob-
ability through aspike-and-slab procedure'. Although we subsampled
the number of SARS-CoV-2 genomes by country in proportion to case
counts, they do not fully correspond because we used aminimum num-
ber of genomes for countries withlow case counts. We therefore evalu-
ated whether this resulted in signal for sampling bias by including an
originand destination covariate inthe GLM based on the residuals for
aregressionanalysis between genomes and case counts (following™).
We performed this analysis using a set of empirical trees (cfr. below)
applyingbothatime-homogeneous and time-inhomogeneous model,
but found nosupport for these additional covariates (Supplementary
Table 2).

We performed inference under the full model specification using
Markov chain Monte Carlo (MCMC) sampling and used the BEAGLE
library v3* to increase computational performance. We specified
standard transition kernels on all parameters, except for the regres-
sion coefficients of the piecewise-constant coalescent GLM model.
For these parameters, weimplemented new Hamiltonian Monte Carlo
(HMC) transition kernels to improve sampling efficiency. These ker-
nels use principles from Hamiltonian dynamics and their approximate
energy conserving properties toreduce correlationbetween successive

sampled states, but require computation of the gradient of the model
log-posterior with respect to the parameters of interest, in addition
to efficient evaluation of the log-posterior that BEAGLE provides. To
accomplish this, we extended our previous analytic derivation of the
gradient of the log-density from the skygrid coalescent model with
respect to the log-population-sizes® to now be with respect to the
regression coefficients using the chain rule and their regression design
matrix.

Due to the data set size, MCMC burn-in takes up considerable
computational time. We therefore iterated through aseries of BEAST
inferences, initially only considering sequence evolution and sub-
sequently adding the location data, to arrive at a tree distribution
from which trees were taken as starting trees in our final analyses.
The latter was composed of multiple independent MCMC runs that
were run sufficiently long to ensure that their combined posterior
samples achieved effective sample sizes (ESSs) larger than 100 for all
continuous parameters.

- Data augmentation through online BEAST. As we updated our data-
set followinginitial analyses of the 2,909 genome collection using the
approach discussed in the previous subsection, we sought to capital-
ize onthese efforts to limit the burn-in for subsequent analyses of the
3,959 dataset. Specifically, we adopted the distance-based procedure
to insert new taxa into a time-measured phylogenetic tree sample as
implemented in the BEAST framework for online inference?. We sub-
sequently use theaugmented tree as the starting tree for the analyses
of the updated dataset.

- Time-inhomogeneous reconstructions. To accommodate the
time-variability of the mobility measures, we constructed epoch model
extensions of the discrete phylogeography approach that allow speci-
fying arbitrary intervals over the evolutionary history and associating
them with different model parameterizations®. As a complement to
testing covariates of spatial diffusion using a time-homogeneous mod-
el, we used the epoch extension to specify monthly intervals allowing us
toincorporate monthly mobility matrices (air transportation datawere
only available asmonthly numbers), but assuming time-homogeneous
effect sizes and inclusion probabilities. Monthly covariates were again
log-transformed and standardized after adding a pseudo-countto each
entry in the monthly matrices.

In addition, we performed another analysis in which we relaxed the
constant-through-time inclusion probability of the covariates. In this
model specification, each interval is associated with a specific set of
indicator variables to represent the inclusion/exclusion of covariates,
butwe poolinformation about predictorinclusionacross the intervals
using hierarchical graph modelling®. This approach uses aset of indi-
cator variables to model covariate inclusion at the hierarchical level
but allows interval-specific inclusion or predictors to diverge from
the hierarchical level with a non-zero probability (with the number of
differences modelled as a binomial distribution®), which was set to
0.10inour case. We estimated hierarchical and interval-level inclusion
using spike-and-slab®.

Finally, we performed an analysis using the time-inhomogeneous
model in which the interval-specific transition rates are modelled as
afunction of the single covariate that is supported by the analyses
above leveraging aggregate mobility. We incorporated more variability
through time by specifying two-week intervals (similar to the coalescent
GLM interval specification). In addition, we add time-homogeneous
random effects to the phylogeographic transition rate parameteriza-
tion in order to account for potential biases in the ability of mobility
to predict phylogeographic spread. While posterior mean estimates
for these random effects vary, only very few indicate that individual
phylogeographic transition rates significantly deviate from the
mobility data (Supplementary Figure 3). The time-inhomogeneous
GLM approach we employ allows modelling relative differences in
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transition rates, but also the overall rate of migration between coun-
tries varies through time, and importantly, thisis strongly impacted by
intervention strategies. Toaccommodate these dynamics, we further
extended this model by incorporating atime-inhomogeneous overall
CTMC rate scaler and parameterize it as a log linear function of the
total monthly between-country log-transformed and standardized
mobility (time-variable rate scalar GLM in Extended Data Table 2). To
generaterealisations of the discrete location CTMC process and obtain
estimates of the transitions (Markov jumps) between states under this
model, we employed posterior inference of the complete Markov jump
history through time'®*,

While the epoch model allows us to flexibly accommodate
time-variable spatial dynamics, it considerably increases the com-
putational burden associated with likelihood evaluations. In order
to efficiently draw inference under this model for our large data set,
we fit the time-inhomogeneous spatial diffusion process to a set of
trees inferred under the time-homogeneous GLM diffusion model
described above. Although likelihood evaluations remain computation-
ally expensive, even with the speed-up offered by GPU computation
with BEAGLE, eliminating simultaneous tree estimation tremendously
reduces parameter-space, requiring only modest MCMC chain lengths
to adequately explore it. Model and inference specifications for the
different analyses are available as BEAST XML input files*°.

- Posterior Summaries. We assessed MCMC mixing (e.g. using ESSs)
and summarized continuous parameter estimates using Tracer v1.7.1%.
Credibleintervals were computed as 95% HPD intervals. Trees were visu-
alized using FigTree v1.4.4 (available at https://github.com/rambaut/
figtree/releases). In terms of phylogeographic estimates, we mainly
focused oni) transitions to each location and from each location (based
onMarkov jump estimates) instead of pairwise transitions, ii) ratios of
these transitions and iii) how these transitions structured transmission
chainsinindividual countries. Transitions to each and from eachloca-
tionavoid drawing conclusions about direct migration between coun-
tries, which can be tenuous giventhe incomplete genomes coverage of
Europe, while their ratios avoid using absolute numbers of transitions,
which are highly sample-dependent. Phylogeographic inference is
limited to reconstructing the transitions in the ancestral history of a
sample of sequences, which will only be a small fraction of the actual
migration events especially when these events result ininsufficient
onward transmission to be captured in our limited sample. In addition,
SARS-CoV-2genome datacanbe poorly resolved and identical genomes
indifferentlocations are consistent with hypotheses thatinvolve both a
sparse and arich number of virus flows between these locations. As the
data hold little information to distinguish these hypotheses, we only
consider sparse scenario’s by including only unique sequences for each
location. A joint inference of sequence evolution and discrete spatial
diffusion would err on the side of sparse hypotheses anyway because
itwilltend to cluster identical sequences that share alocation. Despite
the general underestimation of spatial dispersal, a phylogeographic
inference s still likely to capture the transition events withimportant
onward transmission, and evaluating the importance of such events
relative to persistence is amajor focus of this study. Cryptic transmis-
sion also complicates the ability to reconstruct spatial dispersal, but
we expect this to be equally likely for introductions and persistence
and therefore focus on their ratio for each location.

We provide three new tree sample toolsin the BEAST codebase avail-
ableat https://github.com/beast-dev/beast-mcmc) to obtain posterior
summaries of location transition histories using posterior tree distribu-
tions annotated with Markov jumps:

« TreeMarkoyJumpHistoryAnalyzer allows collecting Markov jumps
and their timings from a posterior tree distribution annotated with
Markov jumps historiesin a.csv file for further analyses.

« TreeStateTimeSummarizer decomposes the total tree time into the
times associated with contiguous partitions of atree estimated to be

ina particular location state, with the partitions determined by the
Markov jumps. An arbitrary lower- and upper-timeboundary canbe
specified to restrict the summary to a particular time interval in the
evolutionary history. We use the time estimates for the separate parti-
tions associated with each state to calculate an entropy measure that
summarizes the genetic make-up of country-specific transmission
chains. Specifically, we use for each location a normalized Shannon
entropy:

1 n
-— - In(p.),

i) lZp, n(p) o)
where p;is the proportion of time associated with that location for
partitioniof a phylogeographictree and nrepresents the number of
partitions for thatlocationinthetree.

« PersistenceSummarizer also uses posterior tree distributions anno-
tated with Markov jumps to summarize the number of lineages at a
particular pointintime (evaluationtime, 7, cfr. Extended Figure 5),
whichlocationstates they are associated with, since what time point
in the past they have maintained that state and how many sampled
descendants they have after time T, (Extended Figure 5). In addi-
tion, it allows summarizing how long these lineages have circulated
independently priorto T, so before sharing common ancestry with
other lineages that maintained the same location state. Thisinforma-
tion allows us to determine how many lineages are circulating at 7,
that stem either from a unique persistent lineage (maintaining the
same location states) or unique introduction event since a particular
time priorto T, (T, in Extended Figure 5). The association between
incidence and the difference in the logit proportion of unique intro-
ductions and the logit proportion of their descendants on August
15" was evaluated using a p-value obtained by a linear regression
analysis.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

BEAST XML inputfiles are available at https://github.com/phylogeog-
raphy/SARS-CoV-2_EUR_PHYLOGEOGRAPHY (https://doi.org/10.5281/
zenodo.4876442). The SARS-CoV-2 genome datarequired for running
these XML files can be downloaded from https://www.gisaid.org; all
GISAID accession numbers are listed in the GISAID acknowledgments
table (Supplementary Table 3).

The Google COVID-19 Aggregated Mobility Research Dataset and
the Facebook mobility data are not publicly available owing to strin-
gent licensing agreements. Information on the process of requesting
access to the Google mobility datais available from A.S. (sadilekadam@
google.com) and the COVID-19 Community Mobility Reports that were
derived from the Google data are publicly available at https://www.
google.com/covid19/mobility/. The Facebook mobility data are made
available through the Data for Good program (https://dataforgood.
fb.com) under the terms of a data license agreement which defines
the allowed terms of use by partners (contact: disastermaps@fb.com).
Onceapartnerinstitution’srequest for accessis vetted and an appropri-
atedatalicense agreementis signed, then accessis granted through a
Facebook’s web-based spatial visualization tool called Geolnsight. Air
travel datawere obtained from the International Air Transport Associa-
tion (http://www.iata.org).

Log-transformed and standardized among country mobility and air
travel data are specified inthe available XML files. COVID-19 incidence
datawas obtained from https://www.ecdc.europa.eu/en/covid-19/data.
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Code availability

The code for running BEAST analyses is available in the hmc_develop
branch of the BEAST codebase available at https://github.com/
beast-dev/beast-mcmc (https://doi.org/10.5281/zenod0.4895235).
The tools TreeMarkovJumpHistoryAnalyzer, TreeStateTimeSummarizer
and PersistenceSummarizer are available from the master branch in
the same codebase.
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Extended DataFig.1|Monthly international mobility datamatrices: international air traffic data (a), international Facebook mobility data (b), and
international Google mobility data (c). For Facebook data, we also report the single social connectedness index matrix (SCI, b).
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Extended DataFig.2|Estimatedintroductions throughtimeinthe10
European countries and circular migration flow plots summarizing the
estimated transitions between the countries for different time intervals
throughout the SARS-CoV-2 evolutionary history. (a) The introductions
through timeserve asanillustrationand are based on the Markov jump history
inthe MCC tree. We note that the posterior distribution of trees is
accompanied with considerable uncertainty about the location of origin,

August 15" - October 30"

June 15™ - August 15"

destinationand timing of the transitions, whichis difficult to appropriately
visualize. The grey box represents the time period fromJune 15" to August 15%.
(b) The circular migration flow plots are based on the posterior expectations of
the Markov jumps. Thesizes of the plots reflect the total number of transitions
foreach period. Inthese plots, migration flow out of a particular location starts
closetotheouterringand ends withan arrowhead more distant from the
destinationlocation.
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Extended Data Table 1| Genome sampling by country, collected on November 3, 2020, and updated on January 5, 2021

country genomes genomes total
(Nov. 3rd, 2020) | (Jan 5th, 2021)
Belgium 183 (1,091) 53 (957) 236
France 600 (1,441) 167 (762) 767
Germany 246 (486) 75 (482) 321
Italy 281 (795) 75 (257) 356
The Netherlands 159 (2,387) 47 (1,032) 206
Norway 100 (414) 92 (482) 192
Portugal 100 (1,370) 100* 200
Spain 647 (2,443) 191 (827) 838
Switzerland 100 (3,019) 98 (1,421) 198
The United Kingdom | 493 (26,366) 152 (50,175) 645
total 2,909 1,050 3,959

The numbers in between brackets represent the number of available genomes that were subsampled. *For Portugal, almost all available genomes were included to increase the number of

genomes to 200.
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Extended Data Table 2 | Parameter estimates for the various Bayesian time-measured phylogeographic models applied to
the SARS-CoV-2 genome data set

Model Parameter estimates

Time- coalescent GLM o =2.604[2.487,2.735], B =1.711 [1.603,1.898]

homogenous

spatial diffusion spatial GLM air travel: E[8] = 0.018, (B|6=1) = 0.044
[0.001,0.123]

SCI: E[8] = 0.004, B(|6=1) = 0.013 [0.003,0.032]
mobility: E[5] > 0.999, B(|6=1) = 0.358

[0.258,0.456]
Time- spatial GLM, air travel: E[8] = 0.018, B(]6=1) = 0.029
inhomogeneous constant inclusion [0.001,0.105]

spatial diffusion probabilities SCI: E[5] = 0.008, B|6=1 = 0.024 [0.001,0.078]

mobility: E[5] > 0.999, B(|5=1) =0.333
[0.229,0.438]

spatial GLM, time- | air travel: E[6x] = 0.010, B|(6n=1) = 0.047
variable inclusion [0.002,0.139]

probabilities SCI: E[81] =.0.012, B| 5r=1 = 0.018 [0.000,0.062]
mobility: E[65]'=0.949, B(|8n=1) = 0.357
[0.230,0.503]

spatial GLM mobility: B = 0.271 [0.118,0.444]

time-variable rate mobility: a = 0.740 [0.618,0.856], B = 0.504
scalar GLM [0.350,0.646]

The coalescent generalized linear model (GLM) parameterizes bi-weekly effective population sizes as a log-linear function of COVID-19 incidence data, with a and 3 representing the log
intercept and log regression coefficient. In the time-inhomogeneous spatial diffusion models, no coalescent prior was used as these models were fitted onto posterior trees inferred from the
time-homogeneous model (cfr. Methods). For the spatial GLM model, we report inclusion probability estimates through the expectations of the boolean indicators (8) associated with each pre-
dictor and log conditional effect sizes (the regression coefficient conditional on the predictor being included in the model, B(|8=1)). SCI = Social Connectedness Index, based on Facebook data.
For the model with time-variable inclusion probabilities, we report the parameters at the hierarchical level (3, and B|8,, cfr. Methods). In the model with a time-variable rate scalar, we parameter-
ize this rate scalar as a log-linear function of the overall between-country mobility, with a and 8 representing the log intercept and log regression coefficient.

Using a time-homogeneous model of spatial diffusion, we estimate a maximum inclusion probability for the mobility data whereas air transportation data and SClI offer no predictive value. We
also estimate a strong positive association between viral population size change through time and COVID-19 incidence in the coalescent GLM. We further confirm the support for the mobility
covariate in a time-inhomogeneous spatial model that incorporates monthly mobility measures, with either constant or time-variable inclusion probabilities. In addition to parameterizing the
relative rates of spread between countries according to this covariate, we extend our time-inhomogeneous approach to also model bi-weekly variation in the overall rate of spread between
countries as a function of mobility measures (time-variable rate scalar GLM). This approach estimates a positive association between the overall rate of spatial spread and mobility data.



Extended Data Table 3 | Mobility to or from each country within our 10-country sample as the percentage of the total
between-country mobility for these countries within Europe

country Mobility percentage
Belgium 87.2
France 89.5
Germany 63.9
Italy 64.8
The Netherlands 93.2
Norway 27.1
Portugal 94.0
Spain 90.3
Switzerland 84.8
The United Kingdom 48.6

The pairwise mobility measures summarized in this table are shown in Extended Data Figure 3.
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The Google COVID-19 Aggregated Mobility Research Dataset and the Facebook mobility data are not publicly available owing to stringent licensing agreements.
Information on the process of requesting access to the Google mobility data is available from A.S. (sadilekadam@google.com) and the COVID-19 Community
Mobility Reports that were derived from the Google data are publicly available at https://www.google.com/covid19/mobility/. The Facebook mobility data are made
available through the Data for Good program (https://dataforgood.fb.com) under the terms of a data license agreement which defines the allowed terms of use by
partners (contact: disastermaps@fb.com). Once a partner institution’s request for access is vetted and an appropriate data license agreement is signed, then access
is granted through a Facebook’s web-based spatial visualization tool called Geolnsight. Air travel data were obtained from the International Air Transport
Association (http://www.iata.org).

Log-transformed and standardized among country mobility and air travel data are specified in the available XML files. COVID-19 incidence data was obtained from
https://www.ecdc.europa.eu/en/covid-19/data.
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All studies must disclose on these points even when the disclosure is negative.

Study description phylogeographic reconstruction of the spread of SARS-CoV-2 based on 3,959 genomes

Research sample The research sample consists of 3,959 SARS-CoV-2 B.1 genomes with a sampling date between January and October 2020. The
genomes were downloaded from GISAID (www.gisaid.org); GISAID accession numbers can be found in the GISAID acknowledgments
table.

Sampling strategy The number of SARS-CoV-2 genomes by country in our sampling strategy was proportional to the cumulative number of cases, with a

minimum of 200 in order to ensure that each country is well-represented. The ratio of sequences over cases was selected in order to
achieve a large genomic data set that could still be analyzed with complex models in a Bayesian phylogeographic analysis in a
reasonable time frame (aiming at about 4,000 genomes).

Data collection We used a two-step genome data collection procedure. Genomes were downloaded by S.L.H. and P.L. using from EpiCoV database in
GISAID. In the first step, we assembled 2,909 genomes from 10 European countries with sufficient numbers of genomes available
from the first wave an the beginning of the second wave on November 3, 2020. To maximize the temporal and spatial coverage in
each country, we binned genomes by epi-week and sampled as evenly as possible, sampling from a different region within the
country when available. To increase the representation recently sampled genomes and include genomes up till the end of the month
October, we updated our dataset on January 5, 2021 by adding over 1,000 non-identical sequences collected between August 1st
and October 31st. To bias the temporal coverage towards more recent samples, the genomes from each country were binned by
week and sampled such that the number of sequences added by week was proportional to an exponential function of the form et/4,
where t=0 represents August 1st and t=13 is October 31st. For Portugal, we did not use this preferential sampling as we needed to
include close to all available genomes to raise the number of genomes to 200.

Timing and spatial scale ' From the globally sampled SARS-CoV-2 genomes available in GISAID (www.gisaid.org), we selected B.1 genomes from Belgium,
France, Germany, Italy, Netherlands, Norway, Portugal, Spain, Switzerland and the United Kingdom sampled from January to October
2020. We focused on these countries based on the availability of genome data from both the first and second wave on November 3,
2020 (the date at which we initiated the study), and because of their relatively high ratio of genomes to positive cases. The date
range encompasses a time period from first documented spread of SARS-CoV-2 B.1 in Europe to the initial rise in cases during the
second COVID-19 wave in Europe. On November 3, 2020, SARS-CoV-2 B.1 genomes were available up to October 21. In the second
data augmentation step (cfr. 'Data collection'), this was extended to October 31 to cover the full month.

Data exclusions From the final aligned sequence set, we removed 12 potential outliers, based on a root-to-tip regression on TempEst v1.5.3 on a
maximum-likelihood tree inferred with IQTREE v2.0.3 18.

Reproducibility Analyses are reproducible through the xml files complemented with the genomic data from GISAID

Randomization Phylogenetic inference seeks to infer evolutionary history from the complete collection of gene sequences and does not involve
comparing an intervention group to a control group, where randomization is needed to assign individuals to these groups.

Blinding Phylogenetic inference provides a statistical estimate of evolutionary history that is not subject to observer bias as can occur in
randomized controlled trials for example. So, no blinding was needed.

Did the study involve field work? |:| Yes No
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>
Q
—
C
=
D
=
D
w
D
Q
=
(@)
=
=
D
©
]
=
>
(e}
(%2
C
3
3
Q
=
<

0 judy

(

0¢




Materials & experimental systems
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Animals and other organisms
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n/a | Involved in the study
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|Z |:| Flow cytometry
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