

Semantic of eGovernment Processes: a Formal Approach to Service Definition

Annalisa Barone, Paolo Di Pietro
Diviana e-consulting

Via Pisandro, 91
00124 Rome - Italy

abarone@acm.org, dipietro@acm.org

Abstract

This paper presents Arianna, the approach used in
Diviana, a small Italian e-consulting organization, for
defining a standard in describing the semantic of e-
government services. Such a standard is born sharing
(and not imposing!) information with Italian Local
Public Administration (LPA) Entities, especially Comuni.

In order to describe semantically the LPA services,
our approach models ontologies using the Unified
Modeling Language (UML).

The UML model is automatically converted in a SVG
site semantically browsable, as further explained later,
and a set of XML Schema Definition (XSD) files,
describing data structure used in the services.

Moreover, such XSD files represent the
communication standard intra and inter LPA entities; in
fact the XSD describes the base elements for
implementing the application interoperability.

An ontology driven front-end generator allows the
generation of an XForms application, fully compliant
with the model. It is an universal front-end, fully
customizable by the LPA, and standardize the
relationship between citizens and LPA. In a global effort
to reorganize the LPA, this approach completely solve
the front-end site of the e-government, allowing focalize
resources on the BPR site.

All the information contained in the model repository
are made available through one e-government catalogue
over the internet.

The results obtained during the tasks of
standardization conclude the paper.

1. Introduction

Internet diffusion supported a high standardization
level: everyone can browse millions of sites which use
heterogeneous technologies without having any problem.

In the second half of 90s, the interest for the
Application Interoperability grew up rapidly. The growth

did not correspond with an efficient technology but with
the promises it holds.

In fact, nowadays, Application Interoperability is
pervasive in many Internet activities and it is transparent
for the users. Application Interoperability is the set
containing everything needed by two or more
applications to interact each others for reaching a specific
business goal.

For example, let us consider a b2b environment: e-
commerce sites are tightly integrated with just-in-time
producers, transport/logistics and payment sites.

Usually, the Application Interoperability is
implemented using ad-hoc interfaces: each site has its
specific technology and language.

Such sites are islands in the cyberspace: the users can
browse them but each site has laws, rules and languages
for its own.

This situation could be acceptable in the early Internet
age but today it is obsolete. In fact the islands want to
gather together in archipelagos using common laws, rules
and languages.

The Italian Public Administration (PA) is an
archipelago of Administrative Entities including 8100
Towns (Comuni), 103 Province and 20 Regions, each
one with its Administrative Autonomy and the need of
interacting and integrating each other. The Central
Government and several other government related
Agencies complete the picture.

In order to accomplish the integration, the critical step
is defining a communication standard between
Administrative Entities.

A standard could be defined using an imposing way
(by law) or using a sharing process. The first way has no
chance of success because it reduces the decisional
autonomy of the Administrative Entities, guaranteed by
the Italian Constitutional Law.

The latter way aims to share the domain information,
following the method successfully used by the Internet
Engineering Task Force (IETF) [1], and the W3C[2] for
introducing new Internet technologies.

Defining and tuning a shared standard is a longer and
more complex task than imposing a prefab one. In fact,
the process has to overcome difficulties, rivalries and
prejudices and the process managers must be super-
partes and must have a strong authoritativeness.

Moreover, the complexity of defining a PA standard is
enormous and it is easy losing the governance of the
project.

In order to manage such a complexity we need a
formal approach using a formal representation. We
decided to use UML modelling for representing the
standard, as we are going to explain in the following
sections.
In order to build up a standard it is necessary to face
various problems which concern with juridical, managing
and monitoring aspects, beside the technology ones. Even
the impacts of the change on persons have to be
considered. Our goal is to describe this situation in an
easy to understand and not ambiguous manner in order to
discuss and share the standard. We propose the use of a
formal model to accomplish such a goal.

The whole process and the tools described in this
paper have been implemented by an articulate solution,

named Arianna. As in the
myth, Arianna gave Theseus
a wool thread to find his
way out the labyrinth after
he killed the Minotaur, our
solution give the user the
ability to discover his/her
path into the complexity of

the Public Administration in general and, more
specifically, into the Italian one. Arianna can be found at
http://Arianna.diviana.net.

In the remaining of this paper, Section 2 introduces the
concept of ontology, Section 3 summarizes the solution
paradigm, Section 4 describes the architectural model,
Section 5 describes the Interoperability Pattern, Section 6
makes some consideration about the reuse based
approach, Section 7 shows the UML repository structure
and section 8 shows the different ways used to made
available the knowledge base to the users over the
Internet. Section 9 makes a short description of the
catalogue, while Section 10 describes the Ontology
Definition and Usage Process. Section 11 presents some
numerical results. Some final remarks and forwards in
Section 12 and 13 conclude the paper.

2. The LPA ontology

The complexity described in the introduction must be
managed, and the first enabling step is a shared
knowledge. The key concept driving our approach on
sharing knowledge is the LPA ontology definition.

The ontology definition is the basic to manage the
interaction between a large amount of subjects, each one
with its decisional autonomy, to identify the involved
concepts, information, elements, subjects and roles and
their mutual relationships, giving each one both a
semantic definition and both intrinsic structure
description. And everything must be shared, with time
and patience.

To achieve this goal, an analysis of the services
offered by the LPA has been made. The result has been
the identification of the services, each one with their
respective clients and providers.

For each service, the following items, needed to
enable the service supplying, have been identified:

• Information, each one with the description of
its:
o ownership definition;
o full information structure;
o lifecycle.

• Normative;
• Administrative practices;
• Available best practices, if any.

Services are also been classified using different
taxonomies, giving to specific classes of
users/providers an easy way to retrieve and access
them.
The service provider describes the specific LPA

responsible for the service. In the case of complex
services (i.e. services involving more than one
cooperating LPAs) it describes the single LPA
responsible for the entire service, usually representing the
one facing with the user.

The client describes the specific subject that will use
the service. It can be a citizen, a company or a third part
acting as an intermediate.

The full ontology definition is based on a specific
solution paradigm and is described using an UML
knowledge base, as described in the remaining of then
paper.

3. The solution paradigm

The solution paradigm is based on the following three
main aspects:
1. The definition of an architectural reference model;
2. The definition of an interoperability pattern;
3. The reuse based approach.

4. Architecture: a Reference Model

As the main goal of our work is to define a semantic
approach capable of running in different physical
environment, we didn’t prescribe a specific architecture,
but only describe a generic logical layering, permitting
hosting of specific implementations.

The result is an n-tier architecture, briefly described in
the rest of this chapter and depicted by the following
figure:

Fr
on

t
en

d
Po

rt
al

s

BO 2

BO 1

BO 3

FO 1

FO 2

PO 3

PO 4

Basic Infrastructural Services

Secondary Infrastructural Services

D
ire

ct
or

y

In
te

gr
at

.
R

ep
os

it.

Se
cu

rit
y

Lo
gg

in
g

Pu
bl

is
h/

Su
bs

cr
.

Ce
rt

.
Au

th
.

W
or

kf
lo

w

M
et

er
in

g

G
2B

/G
2C

G
2G

/G
2E

U
C

D
riv

er

Al
tr

o

Service center Front officeBack office

X
B

ro
ke

r

BO CS

User

Fr
on

t
en

d
Po

rt
al

s

BO 2BO 2

BO 1BO 1

BO 3BO 3

FO 1FO 1

FO 2FO 2

PO 3PO 3

PO 4PO 4

Basic Infrastructural Services

Secondary Infrastructural Services

D
ire

ct
or

y
D

ire
ct

or
y

In
te

gr
at

.
R

ep
os

it.
In

te
gr

at
.

R
ep

os
it.

Se
cu

rit
y

Se
cu

rit
y

Lo
gg

in
g

Lo
gg

in
g

Pu
bl

is
h/

Su
bs

cr
.

Pu
bl

is
h/

Su
bs

cr
.

Ce
rt

.
Au

th
.

Ce
rt

.
Au

th
.

W
or

kf
lo

w
W

or
kf

lo
w

M
et

er
in

g
M

et
er

in
g

G
2B

/G
2C

G
2G

/G
2E

G
2B

/G
2C

G
2G

/G
2E

U
C

D
riv

er
U

C
D

riv
er

Al
tr

o
Al

tr
o

Service center Front officeBack office

X
B

ro
ke

r

BO CS

User

Figure 1. Architecture overview

On the above architecture, the user ask for a service
using a portal or a front end application whose internals
are not relevant: just the interfaces are relevant and these
must be XML interfaces. The channel is still not
important: it can be http or MOM (Message oriented
Middleware). The receiver is always a broker, that is a
central component of a Service Center. The broker, using
a set of specific infrastructural services, is able to identify
the final receiver and routing the request. The Back
Office exposes a series of services: the service interface
is in XML. As the services are often extracted from
legacy systems, these systems have been first wrapped
using their native technology and then wrapped again
using XML. Of course, a recent Back Office
implementation could directly expose an XML interface.

In the case of a federated architecture, the BackOffice
could be another Service center.

The Service Center itself can be seen as a Virtual
Service Layer (VSL) in a specific architecture
implementation, meaning that it must not be a physical
layer, but only a decoupling system between the Front-
End Service Layer (FSL) and the Back-End Service
Layer (BSL).

There can be several infrastructural services used by
the VSL to accomplish their tasks, and all of them could
be provided by third parts. These services can be grouped
in two main classes: Basic and Secondary infrastructural
Services. The Basic Infrastructural Services are Security
services, Directory services, Publishing/Subscribing
services and Logging services, Certification Authority
services. Samples of Secondary Infrastructural Services
are Workflow and Use Case Driven workflow services,
Metering services and Billing services.

5. Interoperability Pattern

After a deep analysis of the e-government services,
and several intermediate steps, we were able to identify
one pattern capable to hosts every e-government service.

This pattern, delineated in Figure 2, describes the
different roles and the main activities they must perform
to achieve the service implementation. Here is a brief
description of the involved roles:
1. Requestor: the role who submits a request to the

Public Administration: it is primarily a human user,
but can also be another architectural layer. In both
cases, it is already authenticated when the
transaction begins.

2. The Front-end Service Layer (FSL), which manage
the user interaction: it can typically be a portal or a
generic front-end application.

3. The Virtual Service Layer (VSL), which provides
common infrastructural services, (payments,
Certification Authority, directory services,
Orchestration services and so on). This layer
provides a logical detachment between the requestor
(FSL) and the provider (BSL) of the service.

4. The Back-end Service Layer (BSL), which
implements the real Backoffice Service. The BSL
exposes the logical interfaces for the provided
services. In a real BSL implementation there should
be an information system or, in the worst case, just a
stub routing the requests to a human operator.

5. Administration Back Offices: here is where humans
accomplish their administrative task implementing
the business/government processes.

6. The Protocol: this is where a unique identifier is
assigned to each received Service Request. This
number has normative meaning and value: it is the
real receipt from the administration, and can be used
by the citizen as a proof of presentation. Depending
on the particular service, the Protocol Date is the
starting date to measure Service Level compliancy.

Send Request Form

Use Answer

Request Form Filling

Prepare the Request Form

Recall an Old Partially Filled Request Form

Request Envelopment and Send

Send(Request Form)

Analyze Answer

Identify Form Filling Support

Select a New Service

Print Request Form
Request sending Certified e-mail

Analyze the Envelope

Send(Envelope)

Analyze Answer

Collect(Receipt)

Propagate(Answer)

Send Answer

Analyze Envelope

Fulfill Request

Return(Answer)[on-line Service Request]

Read a Certified e-mail Message

Start Request Processing[off-line Service Request]

Assign a Request Protocol Number

Read(Message) Send to Protocol

on-line Service Request[Servizio on-line]

[off-line Service Request]Return(Receipt)

Return(Answer)[off-line Service Request]

Send(Request Form)[Request Form = [Completely Filled]]

[Request Form = [Partially Filled]]

[Exception]
Return(Exception)

Send(Envelope)[mode = [Certified e-mail]]

Send(Envelope)[mode = [OnLine]]

[Push Return Address Available]

Protocol SystemAdministrative Office : Administrative OfficeBSL : BSLVSL : VSLFSL : FSLRequestor : Requestor

Figure 2. Interoperability Pattern

The Interoperability Pattern shown in Figure 2 is one
of many interaction diagrams describing the workflow
with the main activities to be performed by the different

roles. Each activity is further described by a lower level
workflow.

A short description of the workflow is the following:
1. The Requestor requires a specific service;
2. The FSL can use a set of services to download

information from the BackEnd; then prepares the
request form and preload some fields with the
information just downloaded; examples of this
kind of services are ‘Request for family
composition’ or ‘Request for Owned Real
Estates’; they enable the FSL to preload some
request form fields, giving the user the ability to
select the information relevant to the service
instance avoiding an error prone manual filling.

3. The Requestor fills the form fields. If, for any
reason, he/she decides to suspend the form
filling, the operation is suspended and the request
goes in a partially filled state; this state can be
later retrieved by the user. Note that this behavior
is only admissible for complex forms, when a
human requestor could be asked for data
unknown at the filling time. The requestor can
also decide to print the request.

4. When the Requestor decides to send the form, the
FSL prepares it filling some system info then
send it to the VSL. This is the decoupling point
between the FSL and the rest of the world: the
FSL send a request and wait for a synchronous
answer.

5. The VSL, after reading the request type and the
destination, identifies the BSL address and the
physical way to be used to send it: the BSL, in
fact, could not only be online or offline, but could
also be lacking of an Information System behind.
In the latter case, the service request will be send
by the VSL using a Certified Electronic Mail
(CEM), with the CEM system giving a receipt
routed by the VSL to the requestor. Note that the
CEM system is usually a third part service.

6. In the online case, the Service Request reaches
the BSL, which dispatch it to the Protocol System
(another candidate for a Third Part system).

7. The Service Request is now ready to be fulfilled;
we can have two options:
a. a Synchronous request, i.e. a request with an

immediate answer by the BSL (for instance
a request to access data on a Back Office
Information System),

In this case, the BSL fulfills the Service
request and produces the required answer
sending it to the requestor through the
VSL.

b. an Asynchronous request, i.e. a request that
requires a human participation, usually
fulfilled in terms of hours or days.

In this case, the BSL sends a receipt to
the requestor through the VSL and queue
the service request to the appropriate
employee/workflow. Every
communication with the requestor will be
treated with a push approach to notify an
event toward one or more delivery
addresses, and then the requestor will
connect accessing the real
communication.

8. In the CEM case, the overall process is the same.
The only difference is in a human intervention to
open the mailbox, read the message and then
forward it to the Protocol. The successive
behavior corresponds to the one described in
point 7 above.

In summary, the pattern described can be applied to
every e-government service. In fact, it is used all over the
entire model, so that every service reference it. Each
service has its own Workflow model, that is the concrete
instantiation of the above pattern and, precisely, redefines
the first two roles describing the specific information to
download to support the user during the form filling.

Moreover, the pattern describes a Web Services Based
Approach in the communication between the FSL and the
BSL (the VSL acting only as a virtual mediator), where
each e-government service has one and only one
signature, given by the couple Request/Receipt or
Answer. The exceptions definition completes the
specification.

6. The Reuse Based Approach

From the inception phase of the entire project, our
pole star have always been the reuse. The reuse of
everything, from ideas to artifacts, from the organization
structures to processes. The only self limitation from the
beginning were as follow:
• Respect the actual laws and regulations, but as a

critical observer, extrapolate suggestions for
enhancement;

• Respect the decisional autonomy of the
Administrative Entities, guaranteed by the Italian
Constitutional Law.

• Act as a standardization group, looking without
party-spirit both at the local administration when
discussing their organizational needs and solutions
and both at the software companies when discussion
their technical solutions.

With these points engraved on our memory, we start
reasoning about the reuse.

The first question was Reusing what? Do we have to
reuse organizational processes or software solutions,
process definition or class definition? There was no easy
answer, because the number of potential users can be

huge, the number of different solution is large, there are
many different ways to aggregate/disaggregate the
participants, the information, the users. So, we decide to
select an approach enabling us to reuse the knowledge.

The work experience of the authors, deeply involved
not only with IT themes like standardization, modeling
and architectures, but also with business consultancy in
the government field, led them to discover an obvious
fact: the work of the business consulting firms usually
produces a huge result in term of paper, but the language
used is not comprehensible to the software
implementation companies; as a result the latter usually
throw away the work of the former and start again doing
the job, usually with an implementation driven approach
and a less strategic vision.

This approach must be overcome. There is the need to
use a common language for both these roles, a language
enabling the representation of both business and technical
objects, strictly related together. But the language itself is
still not enough: there is the need of a methodological
approach, a complete path from the process inception
thru its final implementation, joining together all the
different aspects (the knowledge) in a melting repository
where each actor can manifest its own knowledge and at
the same time easily discover the others’ one.

As a result, all the knowledge base content has been
classified in a way suitable to be reused, describing
knowledge components to be aggregated in different
ways, depending on the specific user needs. The
knowledge base thus contains both simple and complex
objects, where the latters are aggregations of the formers.
This approach leads toward a very advanced reuse model,
very effective in practice.

To avoid model pollution, it requires a special role to
be designated: the Model Manager, also known as the
Ontology Manager, who guarantees the coherence of the
information in the knowledge base.

7. UML Repository: the Knowledge Base

Our approach can also be described in terms of
building a repository containing the description of the e-
government processes by every different point of view.
When we needed to select a modeling language, we
decide to use UML[3][4] because it is a standard, it
enables us to use a formal approach to describe the
semantic and it supports extensibility mechanisms.

We then start with building taxonomies. The
repository main menu is shown in the following figure:

SW Companies

Life Events Arianna

(from Use Case View)

Actors

(from Shared Objects)

Stakeholders

e-gov Projects

e-gov Objects
e-gov Services

(from People)

Figure 3. Repository Main Menu

Such a menu allows the users to access Services,
Objects, Projects, Actors, SW companies and Class of
Users. Surfing the e-gov Services taxonomy, we reach
the first level of the service taxonomy:

Demographics

(from Contesti Tematici)

Wellfare

(from Contesti Tematici)

Fiscality & Taxation

(from Contesti Tematici)

Authorizations

(from Contesti Tematici)

Territory & Cadastre

(from Contesti Tematici)

e-gov Services

(from People)

Shared Services

(from Use Case View)

Instruction & Sport

(from Contesti Tematici)

Figure 4. Main Service Taxonomy by the

Administrative Organizational Point of View

Proceeding in the Demographic Area, we reach the
Single Taxonomy Point of View, which groups all the
artifacts related with that particular Area, and specifically
1. Services, containing all the government services

belonging to the area;
2. Objects, containing all the objects declared and used

only by the area;
3. Services by the FSL point of view, grouping all the

service for which a user interface must be developed;

4. Services by the BSL point of view, grouping all the
services for which a web service interface must be
provided by the back office implementation;

as shown in the following figure:

Demographics

(from Contesti Tematici)

Demographics (Services)

Demographics (Objects)

Demographics (FSL)

Demographics (BSL)

Figure 5. Main Menu for a Specific Area

Finally, selecting Services, and after an intermediate
selection step, we reach the service list for the Registry
Office sub area, where all the services are grouped.

Consultazione Normativa Generale

(f rom Consultazione Normativ a Generale)

Consultazione Regolamento Comunale
(delibere)

(f rom Consultazione Regolamento Comunale (delibere)) Reperimento Modulis tica

(f rom Reperimento Modulistica)

Autocertificazioni Anagrafiche Precompilate

(f rom Autocertif icazioni Anagraf iche Precompilate)

Stato delle Richieste Demografiche fatte dal
Cittadino

(f rom Stato delle Richieste Demograf iche f atte dal Cittadino)

Prenotazioni fatte dal Cittadino

(f rom Prenotazioni f atte dal Cittadino)

Cambio di Abitazione

(f rom Cambio di Abitazione)

Immigrazione

(f rom Immigrazione)

Discordanza di Posizione Anagrafica

(f rom Discordanza di Posizione Anagraf ica)

Servizi Anagrafici

(from Servizi Demografici (Servizi))

Incontro a Fronte di una Richiesta

(f rom Incontro a Fronte di una Richiesta)

Incontro con un Funzionario

(f rom Incontro con un Funzionario)

Visure Anagrafiche e di Stato Civile

(f rom Visure Anagraf iche e di Stato Civ ile)

Carta di Identità e CIE

(f rom Carta di Identità e CIE)

Denuncia di Nascita

(f rom Denuncia di Nascita)

Figure 6. Services for the Registry Office sub area

Selecting a single service, we reach the main Service
Diagram, showing:
1. The admissible requestor, in this case an

Authenticated User;
2. The Service itself;
3. the Request Form for the Service;
4. the Receipt Form for the service;
5. other optional messages received from the Service

provider.
An example of this diagram is shown in the following
figure:

Authenticated User

(from Utente Autenticato)

Maecenas eu lig ula. Pr oin elementum

Cras sed odio a magna vi verra

Lor em ips um dolor sit amet ,

consectet uer adipisci ng eli t fusce.

Class apt ent taci ti sociosqu ad lit ora torquent

Maecenas eu lig ula. Pr oin elementum

Cras sed odio a magna vi verra

Lor em ips um dolor sit amet ,

consectet uer adipisci ng eli t fusce.

Class apt ent taci ti sociosqu ad lit ora torquent

Change of Address Request Form

Change of Address Receipt

(from Cambio di Abitazione (Oggetti))

Change of Address

Requests

Figure 7. Main Service Diagram sample

At this point, clicking a Request or a Receipt bring

directly to the UML class diagram containing the detailed
description of the specific object.

Maec enas eu lig ula. Pr oin elementum

Cras sed odio a magna viverra

Lor em ipsum dol or sit amet ,

consectet uer adipiscing eli t fusce.

Class aptent taci ti s ociosqu ad lit ora t orquent

Maec enas eu lig ula. Pr oin elementum

Cras sed odio a magna viverra

Lor em ipsum dol or sit amet ,

consectet uer adipiscing eli t fusce.

Class aptent taci ti s ociosqu ad lit ora t orquent

Request

(from Request)

Maec enas eu lig ula. Pr oin el ementum

Cras s ed odio a magna viverra

Lorem ipsum dolor sit amet,

consectet uer adipiscing eli t fusce.

Class apt ent taci ti sociosqu ad litora t orquent

Maec enas eu lig ula. Pr oin el ementum

Cras s ed odio a magna viverra

Lorem ipsum dolor sit amet,

consectet uer adipiscing eli t fusce.

Class apt ent taci ti sociosqu ad litora t orquent

PA Service Request

(from Request)

Maec enas eu lig ula. Pr oin elementum

Cras sed odio a magna viverra

Lor em ipsum dol or sit amet ,

consectet uer adipiscing eli t fusce.

Class aptent taci ti s ociosqu ad lit ora t orquent

Maec enas eu lig ula. Pr oin elementum

Cras sed odio a magna viverra

Lor em ipsum dol or sit amet ,

consectet uer adipiscing eli t fusce.

Class aptent taci ti s ociosqu ad lit ora t orquent

OffLine PA Service Request

(from Request)

Certified User Credentials

Family Owner

Destination Address

Codice Fiscale

Citizen

Change of Address Request Owner

Relative

Maec enas eu lig ula. Pr oin elementum

Cras sed odio a magna viverra

Lor em ipsum dol or sit amet ,

consectet uer adipiscing eli t fusce.

Class aptent taci ti s ociosqu ad lit ora t orquent

Maec enas eu lig ula. Pr oin elementum

Cras sed odio a magna viverra

Lor em ipsum dol or sit amet ,

consectet uer adipiscing eli t fusce.

Class aptent taci ti s ociosqu ad lit ora t orquent

Change of Address Request

+Requestor

0..1
+Receiving Family

0..1

+Destination

0..1
+New Family Card Owner

0..1

0..*
+Other citizen

0..*

+Owner

0..*0..*

Citizen

0..*
+Immigrate

0..*

Figure 8. Class Diagram of a Specific Service Request

Of course, every item in the diagram brings to a
detailed description of its components. The endpoint is an
elementary item mapped on a simple type, each one, in
turn, directly maps on a specific XSD simple type.

Every UML element can contain optional attributes,
describing both quantitative and qualitative
characteristics. Acting this way, we can tie up specific
new or legacy documents, describe XML attributes (field
length, pattern, number of digits, and so on), describe e-
government attributes (the kind of the service: a petition,
a payment, a certification, an information request), and
other as needed.

Considering Figure 3, we can browse in the same way
the other parts of the model. The approach is the same as
described for the e-gov taxonomies. The overall idea is
that the knowledge is reticular and not hierarchical, so
the model can have multiple entry points, each one
reflecting a specific user point of view of the subordinate
information set. Each item is modeled only once in the

entire knowledge base, but can be reached trough a
combination of different user driven paths.

Here is a short overview of the main menu elements,
representing the main model entry points:
• e-gov objects: describing all the infrastructural and

the shared objects;
• Stakeholders: the model entry point for citizens

(G2C), industries (G2B), other public
administrations (G2G) and Civil Servants (G2E).

Stakeholders

(from Arianna)
Citizens

Companies Administrations

Civil Servants

G2C

G2B G2G

G2E

Figure 9. Model Entry Point for Stakeholder

• E-gov projects: the model entry point for each
project instance;

• SW development companies: the model entry point
coupling companies and service implementation;

• Life events: a taxonomy describing the service by
the point of view of the citizen and company
lifecycle.

8. Knowledge Base publishing

The Knowledge Base publishing is the activity needed
to make available the full knowledge base content to the
potential users. There are two families of users: new
users and recurring ones. The goal is to give the new user
the ability to easily discover the potential of the
approach, becoming a recurring user, which in turn need
to access the information in the easiest possible way,
without following predefined paths.

The KB publishing must then make available the
following items:
• The SVG Model, to navigate the knowledge using

UML;
• The XML Schema, to represent the information

structure;
• The XForms to prototype the user interfaces;
To complete the process, the Catalogue is generated,
binding together all the knowledge and giving the user
homogeneous views with separate access points.

8.1. The SVG Model

The UML model must be made available over the
Internet to give the users the ability to access,
understand and browse it. As we use a commercial
product for modeling, the first choice was trying to
rely on the product capabilities for web publishing,
but the result was not satisfying. In fact, we are
using an UML modeler to model mainly at a
Process level than at an object level and this is not
the usual target for such tools. So, we decide to
produce a web version of the knowledge base: our
primary target is administrative and organizational
people.
In order to achieve this goal, we build a tool to
automatically deploy the knowledge base onto the
web in a suitable way to be used by roles other than
bare technicians. We decide to deploy it using
SVG[5], so the results can be easily viewed in a
device independent manner.
We develop the SVG generator in order to achieve:
• The ability to create logical links related with

each model item;
• The ability to easily model links to every target,

both internal and external to the model itself, so
we can connect each model item to documents,
graphs, other models, technical specifications,
XSD definitions, prototypal user interface
samples; in other words everything we want to
logically relate with each item.

A full example of the resulting work can be seen at
http://arianna.diviana.net, following the link as
shown in the following figure:

Figure 10. Internet path to real SVG model

8.2. Creating an XML Schema from the UML
Model

The first logical step was to export the model in a way
suitable to be used by developers. As we are not able to
control the technology used for the different
implementations, because it depends on a free choice
made by the developing companies and/or its contractors,

we needed to define the contracts using a model both
abstract and formal. So we decide to build an XML
Schema (XSD)[6] generator.

The main question to face was how to partition the
model: have we to create a very large XSD containing
the description of the entire universe or, on the opposite,
have we to create hundreds of small XSD containing the
definition of a very small subset of objects? Both
approaches have pros and cons. Building a very large
XSD have a negative performance issue; moreover, it
contains a lot of information not needed by a user
approaching a specific service implementation. On the
opposite, building a very large number of schema get the
user confused, and create an unneeded complexity when
using standard tools as XMLBeans to manage the
generated schemata.

So we decide to use a different approach: we generate
the XSD schema on a per service base, that is, each
service has its own schema, containing only the elements
needed by the specific service. The conceptual structure
of the entire model can be described by the following
figure:

Namespaces
• Demography

• Financing

• Wellfare

• Sport

• Shared Objects

• Instruction

• Fiscality & Taxation

• Territory & Cadastre

Fiscality
&

Taxation
Territory

&
Cadastre

Instruction

Financing

Sport

Demographic
Services

Wellfare

Shared
Objects

Namespaces
• Demography

• Financing

• Wellfare

• Sport

• Shared Objects

• Instruction

• Fiscality & Taxation

• Territory & Cadastre

Fiscality
&

Taxation
Territory

&
Cadastre

Instruction

Financing

Sport

Demographic
Services

Wellfare

Shared
Objects

Figure 11. Model Conceptual Structure

w/Namespaces

The central container contains all the shared objects,
which are objects common to the different logical sub
areas. The orbital containers contain all the objects
private to a specific logical sub area. Each container has
its own namespace.
As each service involves only a subset of objects from a
subset of namespaces, the generated XSD is limited in
scope and therefore in size.

Fiscality
&

Taxation
Territory

&
Cadastre

Instruction

Financing

Sport

Demographic
Services

Wellfare

Shared
Objects

Change of Address
• Demographics
• Shared Objects

Election List
•Demographics
•Shared Objects

Local Taxation
•Fiscality & Taxation
•Shared Objects

Fiscality
&

Taxation
Territory

&
Cadastre

Instruction

Financing

Sport

Demographic
Services

Wellfare

Shared
Objects

Fiscality
&

Taxation
Territory

&
Cadastre

Instruction

Financing

Sport

Demographic
Services

Wellfare

Shared
Objects

Change of Address
• Demographics
• Shared Objects

Election List
•Demographics
•Shared Objects

Local Taxation
•Fiscality & Taxation
•Shared Objects

Figure 12. Service Oriented Model Partition

Of course, this approach can only be pursued having
an automatic XSD generator, because the overall goal is
to keep all the XSD consistent at every time with the
UML model. Different XSD in different service
definition can contain the same object specification. The
logical union of all the Service XSD results in the entire
modeled universe.

Using this approach produced a huge reduction of the
XSD complexity, enhancing their usability. The XSD
content is also described as types, avoid using instance
elements: this approach lead to the build of an XML
Type Library further reducing the XSD complexity and
facilitating reuse.

8.3. XForms

Another critical point has been the lack of
competences by the users to understand both UML and
XSD models: as we were deeply concerned with reuse,
both at a logical and physical level, the resulting model is
composed by a large number of diagrams, each modeling
elementary items. The user can navigate the model, but
the information doesn’t appear immediately in an easy to
understand way. The XSD situation is worst: a lot of non
tech users try to open XSD files using notepad-like tools,
with dramatic results; we produce HTML documentation
for the XSD, but it is still too fragmented (and huge) to
be appreciate by these roles. They asked for a
PowerPoint slide sequence describing the prototype of
the user interface, but this was a costly approach, both by
the development and by the maintenance point of view.

So we decide to try to generate an XForms[7] user
interface, derived directly from the model. In the first
version we decided to generate from the model ‘as it is’,
without any specific enhancement for this kind of task.
The result has been appreciated by the users, enabled for
a validation of the model content and its completeness in
respect of a business (non technical) point of view.

But we decide to go further: we built a complete
Ontology Driven XForms generator. The tool enable the
LPA manager to discover the full complexity of the
underlying ontology, thus using it both as a support for
BPR activities and to deploy a fully functional
sophisticated user interface.

8.3.1. The process to build an XForms
The process to build an XForms starts from a

hierarchical view of the ontology content, as shown in
the following figure:

.
Figure 13. Basic hierarchical view of the ontology

content

The different icons show different kind of knowledge
items, and a small key icon represents a mandatory
knowledge element. At this point, the civil servant can
select all the knowledge items he/she want to be asked to
the citizen simply by checking them; the tool ensure the
congruence with the model.
The final product of this activity is another hierarchical
view, showing the knowledge by a logical user interface
point of view, as described by the following figure:

Figure 14. Hierarchical view of the user interface

The information can be logically grouped in pages and in
groups and moved up and down. Different label can be
specified for each UI element.
A successive step allows to translate the UI in different
languages. The final result is represented by the
following user interface, which can be styled using a
CSS’s.

Figure 15. XForms UI for a real service: 2 samples

The list below reports the most interesting result derived
by using this approach. The first three bullets represents
more political issues, while the latter are more technical.
1. The LPA can customize the user interface without

the need of a costly intervention by an ICT company,
in a cost saving approach;

2. A normative change requires one time change to the
model content and is then redistributed and reapplied
with a minimum cost;

3. The time-to-market of a change is near to zero;

4. The model output is a Web Service implementation

of an e-government request, as described by the
model: the resulting XML is not affected by the UI
customization.

5. The entire front end application derives directly from
the model, thus ensuring a 100% compliancy;

6. There can be multiple presentation layers per
customer (standard, customizable, Accessibility
compliant[8], …);

7. The XForms component behavior is customized
directly by the final customer: 1 model 1 form
many behaviors;

8. The XForms model contains only data declarations:
there are no formatting instructions (i.e. no DIV, no
TAB, no HTML instructions): there is an effective
separation between the data layer and the
presentation layer;

9. The Presentation layer is easily styled using CSS;
10. There is a 1:1 mapping with the UML model and

with the XSD: every change to the model
automatically reflects in a new XForm;

11. The modeled choices are rendered using a
ComboBox;

12. Complex information are collapsed giving the user a
compact view expandable as needed;

13. The customer can easily customize the form,
completely avoiding any optional element;

14. There is no need of an implementation using a
specific language: the models directly maps on the
XML instance;

9. Catalogue

The next logical step has been to bind altogether the
single components we developed, giving users the ability
to navigate all the information, easily switching from one
point of view to another one. So we decide to develop an
Internet application giving users a uniform way to access
all the repository information.

The application is composed by two main modules or
sub-catalogue: the Service Catalog and the Object
Catalog: they describe the definitions of services and
objects and are therefore metadata catalogue.

The Service Catalog allows users to discover e-
government services in a set of given taxonomies. When
a service is reached, the following info set is currently
available:
• the service Use Case diagram, which can be used as

a starting point to surf the entire UML model (see
Figure 7);

• the XForms User interface prototype;
• the full XSD package for the service;
• the XSD documentation in HTML format;
• any documentation related with the service;
• the full list of the secondary services used to

automatic pre-fill the user interface; each service is
recursively described

The Object Catalog allows the users to access all the
information related with every object used by the e-
government services. When an object name is selected,
the user can discriminate between homonymous objects
if any, then access the full info set related with the
selected object, containing:
• the basic Object Oriented information: class name,

parent class if any, stereotype;
• all the documentation describing the object, usually a

natural language document;
• the class diagram describing the object; for complex

objects, the diagram can be used as an entry point to
the UML model (see SVG);

• an Info Base, which collect all technical information
related with the Object Oriented model. It includes:
o the object attributes and relationships; for

enumerated types, it shows the list of all the
enumerated values;

o the children classes, with an indication of where
they are used;

o a used-by list, with all the classes using the
actual object;

o a realized-by list, containing all the classes using
a Realize relationship;

o a realizes list, containing all the classes realized
by the current object;

All the information are clickable, giving the user an easy
way to navigate them.

10. Ontology Definition and Usage Process

The Figure 16 below, is a draft picture of the expected
process usage. In the real world the most Use Cases are
already in use. A brief description of the process is as
follow:
• The Ontology Manager Group effectively manages

the model evolution. There are several Practice
Communities: they suggest model evolution and
present requests for change. A discussion forum
follows. The Ontology Manager Group take the
ultimate decision about acceptance or rejection of
the specific requests; if accepted, the request is
assigned a forecast official release date.

• The Ontology Manager Group decide about
releasing a new version. Each release is identified by
a major and minor version number and is further
specified by a build number. Actually, the old
releases are kept because they are used by
production application. A pre-releasing approach is
also used.

The ontology usage in the real world, depends of the
specific actors. At the moment, we knows about the
following usages:
• The Practice Communities use the catalogue to

verify its consistency. This activity is done by
accessing one of the several deployment models
(SVG version of the UML, XForms, XSD, natural
language documentation and so on). The feedbacks
go back through the change request process.

• PAL people with organizational responsibility
follow the guidelines described by the catalogue to
verify the impact on the actual organization and to
reengineer the impacted processes.

• The Software Companies compares their knowledge
with the catalogue content, and use the result to
evolve their solutions. They can also send their
feedback through the change request process.

• The formal XML validation is achieved directly
accessing the online XSD definition. We cannot
enforce this behavior, but strongly suggest its
implementation by the Software Companies.

In the future, we expect more specific uses, which can be
implemented directly through software agents.
• The full set of the XForms definition of the

elementary items can be browsed together with the
full XSD definition to automatically build highly
dynamic user interfaces for new services.

• The BPEL (or BPML4WS) definition can be used by
highly standardized workflow engine to automate the
modeled business processes.

Documentation Usage

UML Model Usage

Administrative

Technical

Organizational

PAOntology Manager

Catalogue Pubblication

manages

Software Company

XForms Usage Software Agent

Browse Catalog

Workflow Engine

BPEL Usage

Ontology Definition

contributesmanages

Change Request

manages

proposes

proposes

e-gov Project

contributes

proposes

Catalogue Usage

<<extend>>

<<extend>>

<<extend>>

Validates Ontology

BPR Initiatives

SW Development

<<extend>>

Project Development

Web Service Request

XML Schema Usage

<<extend>>

Browses Catalog

Validates

Figure 16. Ontology Definition and Usage UCD

11. Figures

At the date, the repository contains more than 250 full
modeled e-government services, grouped in 7 main areas.
There are more than 1500 classes; more than 18.500
object relationships and more than 1600 diagrams. In the
average, each service used 124 different classes, and each
class have been used 18 times by the different services.
More than 800 different XSD files have been produced.

Reusing a class 18 times is an astounding result: the
initial goal to define a standard service interface brings to
a side effect (expected by the authors!) of reducing
development and maintenance costs, giving in the same
time the ability for skilled companies to develop
component based software.

12. Next steps

The described approach has been used by several e-
government projects in the period 2001-2005.

We are now planning the following approach
evolutions:
• Measuring and Metric System

One of the most important themes is the ability to
make some measurements, giving people a better
understanding of the knowledge base content and
helping them to make some strategic and tactical
decisions. Metrics can help to understand the
complexities and the impacts, to foresee the
duration, to evaluate the size of an intervention.

• Holistic Project Management
Another important theme is related with project
management. As these projects are too complex to
manage using standard waterfall approaches, we
need an holistic approach enabling people to be
involved in the decisional process. We already
successfully experiment a Scrum based approach and
are therefore interested in integrating a tool so
support it.

• Completeness and Consistency tools

As the size of the knowledge base grown, it is
critical to have tools helping to verify the
completeness and the consistency of the content.

The interest for the achieved results is also leading to
several new projects reusing and extending the approach
and the knowledge base; here is a sample list:
• Integrating with an UDDI 3.0 catalog

The two approaches are complementary: the UDDI
standard is a repository of technical information
about a service instantiation, while Arianna is a
metadata repository, containing information about
service templates.

• Sharing the approach with Assinform, the Italian
Association of Software Developers, a subsidiary of
Confindustria, the leading organization representing
manufacturing and service companies in Italy
Only 25 software development companies produce
and sell the solution for more than 80% of the 8100
Italian Comuni. Sharing the approach enable the
model to grow incorporating the knowledge from
different experiences then converging on a shared
model, giving the software companies the
opportunity to face up with a decreasing number of
different requirements.

Moreover, we are evaluating the opportunity to develop
an evolved international version of the knowledge base,
giving users other than Italian mother tongue the ability
to access and use it. The 1.0 release of Arianna
International is planned for 1Q2006.

13. Final remarks

This project is part of a dream, the dream to actively
participate in the improving process of the Public
Administration in our country. Improving this process is
an IT problem only in a minimum part. It is mainly an
organizational problem, with huge impacts on the overall
internal organization.

Every e-government project is driven by visibility
rules, i.e. the political choices are often tactical, related
with events, elections, meetings.

Until now, every step have been made available by the
imagination of few people, and by the visionary and far-
seeing LPA entities who believed in the approach and
sustained it investing their limited funds. We forebode an
augmented interest by the political power and an official
endorsement through the constitution of a consortium to
maintain and enhance the actual knowledge base and to
extend it to new area still not covered (Health and Labour
just to cite).

Moreover, this systematic approach can be easily used
to disseminate the experience in other countries: it can be
a way to export best practices toward third world
countries giving them a model to use as a starting point to

customize their own needs reducing the deployment time
of new e-government solutions.

14. Acknowledgement

A special acknowledge from the authors to their
daughter, Chiara, for her patience bearing the time stolen
her and the never ending discussions.

15. References

[1] http://www.ietf.org
[2] http://www.w3.org
[3] http://www.uml.org
[4] http://www.omg.org
[5] http://www.w3.org/Graphics/SVG
[6] http://www.w3.org/XML/Schema
[7] http://www.w3.org/MarkUp/Forms
[8] http://www.w3.org/wai

16. Full Size images

Send Request Form

Use Answer

Request Form Filling

Prepare the Request Form

Recall an Old Partially Filled Request Form

Request Envelopment and Send

Send(Request Form)

Analyze Answer

Identify Form Filling Support

Select a New Service

Print Request Form
Request sending Certified e-mail

Analyze the Envelope

Send(Envelope)

Analyze Answer

Collect(Receipt)

Propagate(Answer)

Send Answer

Analyze Envelope

Fulfill Request

Return(Answer)[on-line Service Request]

Read a Certified e-mail Message

Start Request Processing[off-line Service Request]

Assign a Request Protocol Number

Read(Message) Send to Protocol

on-line Service Request[Servizio on-line]

[off-line Service Request]Return(Receipt)

Return(Answer)[off-line Service Request]

Send(Request Form)[Request Form = [Completely Filled]]

[Request Form = [Partially Filled]]

[Exception]
Return(Exception)

Send(Envelope)[mode = [Certified e-mail]]

Send(Envelope)[mode = [OnLine]]

[Push Return Address Available]

Protocol SystemAdministrative Office : Administrative OfficeBSL : BSLVSL : VSLFSL : FSLRequestor : Requestor

