
Controversy Corner

Open source software––an evaluation q

Alfonso Fuggetta *

Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza Leonardo da Vinci 32 and CEFRIEL, Via Fucini, 2, I-20133 Milano, Italy

Abstract

The success of Linux and Apache has strengthened the opinion that the open source paradigm is one of the most promising

strategies to enhance the maturity, quality, and efficiency of software development activities. This observation, however, has not

been discussed in much detail and critically addressed by the software engineering community. Most of the claims associated with

open source appear to be weakly motivated and articulated.

For this reason, this paper proposes some qualitative reflections and observations on the nature of open source software and on

the most popular and important claims associated with the open source approach. The ultimate goal of the paper is to identify the

concepts and intuitions that are really peculiar to open source, and to distinguish them from features and aspects that can be equally

applied to or found in proprietary software.

� 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

In the past five years, open source software has be-

come one of the most discussed topics among software

users and practitioners. The increasing interest in open
source software has been motivated by at least three

factors: the success of products such as Linux and

Apache, which are gaining increasing shares in their own

markets (operating systems and http servers); the un-

easiness about the Microsoft monopoly in the software

industry; and, finally, the increasingly strong opinion

that ‘‘classical’’ approaches to software development are

failing to provide a satisfactory answer to the increas-

ing demand for effective and reliable software applica-

tions.

The interest in open source is visible at different levels

and in different contexts:

• There is a very large community of individual users

who support and promote open source. This phe-

nomenon is particularly strong and visible in indus-

trial and academic research, mostly in non-software

areas. As a matter of fact, a large number of support-

ers of the open source approach are not computer sci-

entists. This can be explained by noticing that open

source has not been ‘‘created’’ by the computer sci-
ence research community. Rather, it is the answer

of users to their increasing discomfort about the cost,

complexity, and constraints of many commercial

products. On the other side, computer scientists

(and in particular software engineers) have often

not considered the open source approach as a real

breakthrough in software development: they have

ignored or overlooked it.
• Many companies are focusing their attention and ef-

fort on open source software. This is the case of im-

portant computer manufacturers such as Sun and

IBM, which consider open source (or variations of

this approach) as a strategic opportunity to under-

mine the Microsoft monopoly and to enforce the es-

tablishment of an open operational platform. Indeed,

open source is also being adopted and exploited by an

qControversy corner. It is the intention of the Journal of Systems

and Software to publish, from time to time, articles cut from a different

cloth. This is one such article.

The goal of CONTROVERSY CORNER is both to present

information and to stimulate thought and discussion. Topics chosen

for this coverage are not just traditional formal discussions of research

work; they also contain ideas at the fringers of the field�s ‘‘conventional

wisdom’’.

These articles will succeed only to the extent that they stimulate not

just thought, but action. If you have a strong reaction to the article

that follows, either positive or negative, send it along to your editor, at

card@software.org.

We will publish the best of the responses as CONTROVERY

REVISITED.
* Tel.: +39-02-2399-3623; fax: +39-02-2399-3411.

E-mail address: alfonso.fuggetta@polimi.it (A. Fuggetta).

URL: http://www.cefriel.it/~alfonso.

0164-1212/03/$ - see front matter � 2002 Elsevier Science Inc. All rights reserved.

doi:10.1016/S0164-1212(02)00065-1

The Journal of Systems and Software 66 (2003) 77–90

www.elsevier.com/locate/jss

mail to: mailto:card@software.org
mail to: alfonso.fuggetta@polimi.it
http://www.cefriel.it/~alfonso


increasing number of companies which consider open

source products such as Linux a viable and competi-

tive alternative to proprietary solutions.

• Finally, public institutions and governmental agencies,

especially in Europe, are increasingly interested in

open source software for two main reasons. First,
open source software is considered a viable strategy

to counterbalance the dominance of US technology

and to promote the development of a stronger Euro-

pean software industry. Second, the increasing reli-

ance of governments and public administrations on

software systems has generated a number of concerns

about their security, safety, and trustworthiness.

Moreover, public administration and governments
are concerned about their dependency on specific

software providers and are therefore extremely inter-

ested in identifying approaches that may help them

increase their independence. In this respect, open

source advocates claim that the unrestricted availabil-

ity of the source code makes it possible to address

these issues effectively.

The success of open source software has led a number

of researchers and experts to believe that open source

might really be the answer to the software crisis. Some

open source advocates even say that in the future soft-

ware will be open source or will not be at all. This ex-

treme position has been partially motivated by the

success of most ‘‘free internet services’’, where revenues

are based on selling support services or advertising.
Similarly, one can imagine that a software company can

base its revenues on support services rather than on

selling licenses or source code, even if recently this ap-

proach is being increasingly questioned and criticized

(Shankland, 2001).

In general, open source software is one of the most

important phenomena of the past five years. As such, it

is essential to deepen our understanding of the nature of
open source software and of the factors that have mo-

tivated its success. Unfortunately, most comments and

observations about open source software appear to be

weakly motivated or even misleading. For instance, they

implicitly establish an unproved causal relationship be-

tween the software being open source and its quality;

moreover, there is a confusing interplay of ethical,

business, and technical motivations. As a consequence,
it is difficult to really identify the peculiar and novel

aspects of open source development with respect to

other more traditional software development practices.

The goal of this paper is to provide a preliminary and

qualitative evaluation of the open source approach, by

critically discussing the claims associated with open

source development. This will be accomplished by tak-

ing into account the results and findings of software
engineering research, some relevant literature on the

subject, a number of documents on open source devel-

opment, and the experiences of the author in the field.

The ultimate goal of this qualitative analysis is to pro-

vide preliminary and tentative answers to the following

questions:

• What is really meant by open source?
• What is really novel and different in open source de-

velopment with respect to more traditional ap-

proaches?

• What aspects of open source development can be

equally applied to proprietary software development?

• Is there any causal relationship between the software

being open source and its quality/effectiveness?

• What is the role of open source in business?

2. What is meant by ‘‘open source’’?

The debate about the definition of open source is

massive. There are two different interpretations that are

currently used: ‘‘free software’’ and ‘‘open source’’.

The term ‘‘free software’’ originates from the GNU

project and can be defined as follows (Free Software

Foundation):

Free software is a matter of liberty, not price. To
understand the concept, you should think of ‘‘free’’

as in ‘‘free speech,’’ not as in ‘‘free beer.’’ Free soft-

ware is a matter of the users� freedom to run, copy,

distribute, study, change and improve the software.

[. . .]
In order for the freedoms to make changes, and to

publish improved versions, to be meaningful, you

must have access to the source code of the program.
Therefore, accessibility of source code is a necessary

condition for free software.

According to this definition, the issue is much broader

than just granting unrestricted access to the source code

of a software system. As discussed in more detail in

Section 3, Stallman and the Free Software Foundation

(FSF) assume that source cannot be ‘‘owned’’. In par-
ticular, their definition of free software challenges most

of our assumptions about intellectual property.

The term ‘‘open source’’ has been coined later and,

according to Stallman, it is an attempt to express the

same kind of concept, but with a more prudent and

palatable approach (Free Software Foundation): ‘‘The

main argument for the term �open source software� is

that �free software� makes some people uneasy’’. Actu-
ally, the official definition of ‘‘open source’’ is very close

to ‘‘free software’’ (Opensource.Org). However, as

Stallman argues (Free Software Foundation),

The obvious meaning for ‘‘open source software’’ is

‘‘You can look at the source code.’’ This is a much

78 A. Fuggetta / The Journal of Systems and Software 66 (2003) 77–90



weaker criterion than ‘‘free software’’; it includes

free software, but also includes semi-free programs

[. . .] and even some proprietary programs [. . .].
That obvious meaning for ‘‘open source’’ is not

the meaning that its advocates intend. (Their ‘‘offi-

cial’’ definition is much closer to ‘‘free software.’’)
The result is that most people misunderstand what

they are advocating.

Therefore, ‘‘open source’’ may be (and is indeed) used

to mean also weaker forms of distribution of the source

code. Certainly, the issue is not settled at the moment, as

a number of different interpretations of the term are still

commonly found 1 (e.g., Sun�s community sourcing

(Gabriel and Joy)). In this paper I will consider the

terms ‘‘open source’’ and ‘‘free software’’ as synonyms.

As the former has gained large popularity, it will be used

throughout this paper to mean any form of software

development where the source code is freely accessible to

the worldwide community of users and developers. This

is an intentionally ambiguous definition that aims at in-

cluding different levels of ‘‘openness’’ of the source
code. The reader is therefore invited to pay close at-

tention to the different interpretations of the term ‘‘open

source’’ in the different contexts where it is used.

As a final consideration, in order to properly frame

the notion of open source, it is important to clarify the

relationship between open source software and com-

mercial software (Free Software Foundation):

Commercial software is software being developed by

a business that aims to make money from the use of

the software. ‘‘Commercial’’ and ‘‘proprietary’’ are

not the same thing! Most commercial software is

proprietary, but there is commercial free software,

and there is non-commercial non-free software.

Indeed, as the Linux case has demonstrated, open
source software can also be a commercial success.

3. Ethical and social aspects

The discussion about the real definition of the term

‘‘open source’’ has already emphasized a first ‘‘essential’’

aspect: a significant component of the movement that is
issuing the flag of open source development considers it

more than just a technical problem (Free Software

Foundation):

Someone once said it this way: open source is a de-

velopment methodology; free software is a political

philosophy (or a social movement).

The open source movement focuses on convincing

business that it can profit by respecting the users�
freedom to share and change software. We in the free

software movement appreciate those efforts, but we

believe that there is a more important issue at stake:

all programmers [owe] an ethical obligation to respect
those freedoms for other people. Profit is not wrong

in itself, but it cannot justify mistreating other people.

This is the first and perhaps most important issue

about the open source approach. Is software something

that cannot be owned? The FSF argues that (Free

Software Foundation):

. . .people have been told that natural rights for au-

thors is the accepted and unquestioned tradition of

our society. As a matter of history, the opposite is

true. The idea of natural rights of authors was pro-

posed and decisively rejected when the US Constitu-

tion was drawn up. That is why the Constitution

only permits a system of copyright and does not re-

quire one; that is why it says that copyright must be
temporary. It also states that the purpose of copy-

right is to promote progress––not to reward au-

thors. Copyright does reward authors somewhat,

and publishers more, but that is intended as a means

of modifying their behavior.

I do share some of the genuine, egalitarian, and civil

motivations of the FSF. The notions of copyright and
intellectual property are often misused to guarantee an

unrestricted control over specific technologies and

products (Rifkin, 2000). Moreover, the issue of defining

temporal limits to copyrights is indeed very critical. Fi-

nally, nobody should be allowed to patent generic re-

sults or general scientific findings that are part of the

society�s culture and heritage.

Nevertheless, there are specific contributions that it is
reasonable to consider patentable. The make program,

for instance, is the original result of the inventiveness of

a researcher. The same applies to the first spreadsheet,

Visicalc. Similarly, the graphical user interface was in-

vented at Xerox and then pioneered by Apple. Should

not these results be ‘‘patentable’’? Unquestionably, the

issue is quite critical, but it is unrealistic and improper to

dismiss it by simply denying the notions of intellectual
property and copyright. The analogy between ‘‘free

speech’’ and ‘‘free (and open source) software’’ is mis-

leading. Actually, ‘‘free speech’’ means that everybody

has the right to express his own opinion. Thus, ‘‘free’’

refers to a person’s individual right about his/her own life

and destiny. It does not say anything about other people�s
obligations, except for the fact that everyone is bound to

respect the universal right for free speech. The advocates
of free software use the term ‘‘free’’ to mean that the

results of a person�s work should be freely available to

1 The Appendix A contains some relevant definitions as proposed

by the FSF (Free Software Foundation).

A. Fuggetta / The Journal of Systems and Software 66 (2003) 77–90 79



anybody else. As discussed in Section 5, a company can

certainly decide to pursue a business initiative exploiting

open source software, if this is perceived as a reasonable

and effective strategy. However, this cannot become an

imposition for all software developers.

To make the point even more specific, the Free
Software Foundation lists a number of detailed reasons

to explain why software should be free. In particular, it

argues that intellectual property and software ownership

introduces different levels of harm to the society (Free

Software Foundation):

A copy of a program has nearly zero marginal cost

The first level of harm impedes the simple use of a
program. A copy of a program has nearly zero mar-

ginal cost (and you can pay this cost by doing the

work yourself), so in a free market, it would have

nearly zero price. A license fee is a significant disin-

centive to use the program. If a widely-useful pro-

gram is proprietary, far fewer people will use it.

Programmers also suffer psychosocial harm

Programmers also suffer psychosocial harm know-

ing that many users will not be allowed to use their

work. This leads to an attitude of cynicism or de-

nial.

[. . .]
Since the age of Reagan, the greatest scarcity in the

United States is not technical innovation, but rather

the willingness to work together for the public good.
It makes no sense to encourage the former at the

expense of the latter.

Inability to adapt programs

The second level of material harm is the inability to

adapt programs. The ease of modification of soft-

ware is one of its great advantages over older tech-

nology. But most commercially available software

is not available for modification, even after you

buy it. It is available for you to take it or leave it,

as a black box––that is all.

The third level of material harm affects software de-

velopment

Software development used to be an evolutionary

process, where a person would take an existing pro-
gram and rewrite parts of it for one new feature,

and then another person would rewrite parts to

add another feature; in some cases, this continued

over a period of twenty years. Meanwhile, parts

of the program would be ‘‘cannibalized’’ to form

the beginnings of other programs.

Some of these issues will be discussed later in the

paper (see Sections 4 and 5). As a preliminary obser-

vation, I wonder why software should be different from

other goods and services:

• If software has to be free because its marginal costs is
close to zero, then one may observe that many other

goods have similar low marginal costs, such as books

and CDs, or services such as cinema and theatre

shows (what is the marginal cost of seeing a movie?).

Should not they be ‘‘free’’ as well? This seems unreal-

istic. If a software developer realizes that the price of

his/her product is too high (and therefore is a disin-

centive to use the software) then he/she will reduce
it to increase sales. If there are no users who are will-

ing to pay, it means that nobody is interested in that

software or is able to pay the price. Then it is up to

the developer to decide how to handle the situation.

• The issue concerning programmers� psychological

harm is not just typical of software development. It

is valid for any business activity. Indeed, the real issue

here is how to reward programmers, and certainly it
deserves a lot of attention, as for any other kind of

workers in our society.

• The inability to adapt a program is certainly a critical

issue that has several important facets. When a cus-

tomer buys a car, he/she has the right to change it, of

course. Actually, he ‘‘owns’’ the car. Similarly, if one

buys the source code of a program (see the discussion

on bespoke/custom software in Section 5.4), he/she
can change the software freely. However, customers

often buy the license to use software. It is like renting

a car. As a consequence, the inability to modify and re-

use the source code seems quite obvious. Open source

advocates argue that if a customer spends some money

for a software application, then he should have access

to the source code that has been used to generate the

executable. Again, how can this rule be imposed? What
legal and rational motivations make it possible to force

a developer to use a specific commercial approach?

• A problem related to the inability to see/modify the

source code is the protection of consumers. The advo-

cates of free software say that everybody has the right

to see the source code of a software application, espe-

cially if it is going to be used for sensible and critical

missions. Once again, the issue, as presented, is mis-
leading. It is certainly reasonable to request that the

source code of an application be accessible for inspec-

tions in order to check that the software is reliable

and that it really conforms to the requirements. 2

2 Actually, the availability of source code is not sufficient to protect

customers. As many experiences have widely demonstrated, software

can be maintained effectively only if you have requirements and design

documents. This and other technical issues will be discussed in more

detail in Section 4.

80 A. Fuggetta / The Journal of Systems and Software 66 (2003) 77–90



However, this does not necessarily imply that the cus-

tomer must be granted the right to freely manipulate

and reuse/change/redistribute the source code. The

only situation where this should be granted is when

a software developer decides to stop supporting a

software product or is patently unable to provide
such service effectively. In this case, the protection

of customers� rights requires that the producer re-

leases the source code so that someone else can take

over and provide customers� support.

• The third level of harm indicated by the Free Soft-

ware Foundation concerns software development.

Certainly, it is true that software is often developed

incrementally. However, incremental development
and improvement are not unique to software develop-

ment and are pursued by many companies world-

wide. Therefore, once again, one may ask why

software should be granted a particular status. If

the Free Software Foundation approach were applied

to CD players, then one should derive that the design

of these devices should be open so that each producer

can reuse the innovations introduced by other pro-
ducers. Notice that this issue is different from the

problem of enforcing open standards (discussed later

on): of course we want to be able to play the same CD

on different devices. However, a producer may have

invented some new technique to reduce the weight

of the device or to increase the quality of the sound.

Why should these innovations be made available also

to the competitors ‘‘de jure’’? Again, it might be the
producer�s choice, but certainly not an external impo-

sition.

In conclusion, the different motivations proposed by

free software advocates are not convincing and too ex-

treme. The ultimate goal behind such claims is the desire

to open the software market, nowadays dominated by

few companies and in particular by Microsoft. This is
certainly legitimate and appropriate. Moreover, there

must not be any artificial limitation to the freedom to

create and publish free/open source software. As Aigrain

suggests, ‘‘the voluntary contribution of one�s creation

to the public domain is a right that cannot be restricted

by any commercial interest’’ (Aigrain, 2002). Neverthe-

less, the concept of free software cannot be imposed as

the unique choice to all the software producers who
intend to distribute/sell a software product. Indeed, the

notion of free software has been overloaded with too

many implications, values, and meanings. The approach

of the open source community is more pragmatic

(Opensource.Org):

The Open Source Initiative does not have a position

on whether ideas can be owned, whether patents are
good or bad, or any of the related controversies.

We think the economic self-interest arguments for

open source are strong enough that nobody needs

to go on any moral crusades about it.

[. . .]
The Open Source Initiative is a marketing program

for free software. It is a pitch for ‘‘free software’’ on

solid pragmatic grounds rather than ideological tub-
thumping. The winning substance has not changed,

the losing attitude and symbolism have.

The remainder of the paper will consider the technical

and economical aspects of the open source approach. A

proper characterization of such more practical aspects

may be useful also to rethink some of the general con-

siderations presented in this section.

4. Technical aspects

Open source development has acquired a huge num-

ber of supporters, as it has gained the reputation of an
effective technical approach to software development.

Therefore, it is important to consider some of the main

technical arguments presented by open source advo-

cates.

4.1. Open source as a new way to develop software (a new

process)

One of the strongest claims made by the open source

community is that opening the source code enables a

new and innovative approach to software development.

In particular, this argument is proposed in a famous

paper by Eric S. Raymond, ‘‘The cathedral and the

Bazaar’’ (Raymond, 2000). The most important point

raised by Raymond can be summarized as follows:

Release early and often, delegate everything you

can, be open to the point of promiscuity.

Raymond suggests that successful software develop-

ment must be based on flexible approaches in opposition

to rigid ‘‘cathedral-like approaches’’. Actually, this ob-

servation does not originate in the open source com-

munity. All the criticisms of the waterfall approach are
based on the idea that it is often impossible to carry out

a software development activity using such a rigid pro-

cess. There are a number of concepts that implement this

notion: rapid prototyping, incremental and evolutionary

development, spiral lifecycle, rapid application develop-

ment, and, recently, extreme programming and the agile

software process. These approaches can be equally ap-

plied to proprietary and open source software. This
observation can be further supported by considering an-

other fragment of Raymond�s paper on Linus Torvalds:

Linus�s innovation was not so much in doing quick-

turnaround releases incorporating lots of user

A. Fuggetta / The Journal of Systems and Software 66 (2003) 77–90 81



feedback (something like this had been Unix-world

tradition for a long time), but in scaling it up to

a level of intensity that matched the complexity

of what he was developing. In those early times

(around 1991) it was not unknown for him to re-

lease a new kernel more than once a day! Because
he cultivated his base of co-developers and lever-

aged the Internet for collaboration harder than

anyone else, this worked.

Actually, Microsoft has been applying daily builds

for a long time. In particular, according to Cusumano

and Selby�s study of Microsoft development processes,

the focus of that company is on features and product
vision (Cusumano and Selby, 1995). Features are

changed very frequently and adapted to take into ac-

count new ideas and customers� feedback. Microsoft

daily builds and feature orientation are used exactly to

address the issues raised by Raymond. I hereby include

an excerpt from Cusumano and Selby�s book; it is the

description of the Microsoft process according to a

Microsoft manager:

This is the daily build process. You get a phone call

saying, ‘‘Okay, we are ready to take your check-in.’’

You check it in, and then you send mail to an alias

called NT-build that describes exactly the opera-

tions to do to get that into the source pool. [. . .]
Now go to this directory and link this, and you will

get a new kernel, a new whatever.

We cannot say that this ‘‘bazaar’’ effect is made

possible or ‘‘caused by’’ the software being open source.

These two notions are orthogonal.

Raymond suggests that another essential success

factor of Linux was the availability of the Internet as an

extraordinary cooperation means. However, the same

style of cooperation can be (and is, indeed) pursued for
proprietary software, which is in many situation devel-

oped by different organizations or units often distributed

in different countries (e.g., the software factories in

Bangalore, India, which work for US and European

companies).

Another important point raised by Raymond con-

cerns motivation:

Linus was keeping his hacker/users constantly stim-

ulated and rewarded––stimulated by the prospect

of having an ego-satisfying piece of the action, re-

warded by the sight of constant (even daily) im-

provement in their work.

Certainly, people working in an open source project

are driven by strong motivational factors. So most of the
success of products such as Linux is to be credited to the

commitment and ability of the people who participate in

their development. But can one claim that the only way

to motivate people is by opening the software code? Is

not it true that people can be motivated also with

money, personal success, company loyalty, and other

factors not necessarily related to open source?

Finally, another important remark from Raymond�s
paper concerns management:

There is another kind of skill not normally associ-

ated with software development which I think is

as important as design cleverness to bazaar pro-

jects––and it may be more important. A bazaar

project coordinator or leader must have good peo-

ple and communications skills.

Actually, nowadays any management approach or

method, in any field of engineering and business, stresses

the importance of these skills. Again, the two issues are

orthogonal: good companies (in any domain) do con-

sider management skills; bad companies do not.

More in general, the critical analysis of Raymond�s
arguments suggests two considerations. First, there is no
factual argument to support the claim that the Bazaar-

style of development is ‘‘the’’ best approach for any

software development project. Would it work for-

––say––an avionics system? Second, it is not true that

open source is the only way to enable a Bazaar-style

development. Certainly, open source is a strong moti-

vational and catalyzing factor, but there is no evidence

that it directly causes or that it necessarily and uniquely
implies all the benefits of the Bazaar-style process.

4.2. Open source, requirements, architecture, and distrib-

uted development

In his paper, Raymond includes the following com-

ments:

Perhaps in the end the open-source culture will tri-

umph not because cooperation is morally right or

software ‘‘hoarding’’ is morally wrong (assuming

you believe the latter, which neither Linus nor I

do), but simply because the closed-source world
cannot win an evolutionary arms race with open-

source communities that can put orders of magni-

tude more skilled time into a problem.

It may well turn out that one of the most important

effects of open source�s success will be to teach us that

play is the most economically efficient mode of cre-

ative work.

These comments have two different implications.
First, they once again stress the importance of pursuing

a flexible, democratic, and creative development process.

Second, they emphasize the fact that open source has

82 A. Fuggetta / The Journal of Systems and Software 66 (2003) 77–90



involved a large number of people. Indeed, there has

been a very important and often overlooked factor that

has made possible to develop Linux with this distributed

workforce: people knew what they were doing and how to

do it.

• Software engineering research and practice has dem-

onstrated that an important and critical factor in

software development is requirements. You have to

know what you want to do. The requirement elicita-

tion and specification activity (or problem definition)

is extremely difficult and critical. The developer has

to correctly understand users� requirements, which

often derive from unknown or complex application
domains (e.g., stock trading or air traffic control).

Moreover, different developers can effectively cooper-

ate if they have a common vision of what they are

going to build. In general, requirements elicitation

and sharing is an essential step of any development

activity, especially if it has to be accomplished by a

distributed team of developers.

The development of Linux (as indicated by Raymond
in his paper) was possible because the community of

developers had a wide and shared knowledge of Unix,

i.e., they had a ‘‘living’’ piece of software that em-

bodied all the requirements for the new system being

implemented. Anybody had ‘‘free’’ access to the def-

inition of concepts such as ‘‘process fork and exec’’,

‘‘daemons’’, ‘‘file system operations’’, and ‘‘interrupt

handling’’.
• Similarly, as Raymond states, the basic design of

Linux was accomplished by Torvalds, reusing con-

cepts from Unix. As a consequence, the software ar-

chitecture of the system was well defined and well

known to anybody else who wanted to cooperate in

the project. Finally, Raymond says that he ‘‘re-

strained [his] tendency to be clever’’.

These observations confirm some basic notions of

software engineering: cooperation is possible if developers

share the knowledge about requirements and architecture.

This also might explain why most open source software

deals with system software: operating systems, compil-

ers, web servers. Indeed, the community of developers

can more easily share information about this kind of

products. Can we assert that the same approach works
equally well for business software or for innovative re-

search projects? At the moment, there is no evidence

that this is the case. Similarly, is it necessary to make the

code ‘‘open source’’ in order to pursue distributed de-

velopment activities? Once again they are orthogonal

issues: distributed development is not an exclusive

property of open source software.

Notice, that some widely-cited open source products
have gone open source after they have been completed (or

once they have reached a significant level of develop-

ment). Zope is an example of a product that adopted

this strategy. Therefore, it is improper to relate the

quality of such products to the open source development

process.

4.3. Open source vs. open standards

A number of researchers and practitioners claim that

open source is essential to enable interoperability among

different products in an open market. The classical ex-

amples cited to support this claims are the Internet and

the GSM cellular system. This observation is again

misleading. Interoperability is achieved through open

standards. This does not necessarily imply that the
software be open source. Standards usually define in-

terfaces. Someone can implement the interfaces through

open source software. Others may decide to have their

own proprietary software to provide the same set of

features.

Open source advocates claim that open source soft-

ware is the only way to guarantee that standards

are really open and are not jeopardized by companies
who wants to establish their own monopoly. I argue

that the only way to solve this problem is by urging

antitrust authorities to prohibit any kind of incorrect

practice.

4.4. Open source software is more reliable

Open source advocates argue that (Opensource.Org)

The open source model also means increased secu-

rity; because code is in the public view it will be ex-

posed to extreme scrutiny, with problems being

found and fixed instead of being kept secret until

the wrong person discovers them.

[. . .]
Gerald P. Weinberg once famously observed that, ‘‘If
builders built houses the way programmers built

programs, the first woodpecker to come along would

destroy civilization.’’ He was right. Up to now, the

reliability of most software has been atrociously bad.

Again, these statements are misleading and also a bit

na€ııve.

1. In general, the underlying vision is that software de-
velopers are bad guys who try to hide software bugs.

Therefore, by reading the source code, users can find

problems and fix them. First, it is na€ııve to imagine

that software developers are really interested and

willing to keep bugs secret. Second, users are able

to find and fix the code only if they are good pro-

grammers and if they know the code very well.

This was true for most initial users of Linux and
Apache, since the majority of those users were system

A. Fuggetta / The Journal of Systems and Software 66 (2003) 77–90 83



developers themselves. For most end-users, the avail-

ability of source code is absolutely insignificant: they

would not know what to do with it. Even good pro-

grammers will find difficult or even impossible to de-

bug a large program or a program that does not have

design documents describing its structure and opera-
tions. Many reported experiences about the mainte-

nance of large software systems have clearly

demonstrated that source code is often not enough.

Of course, you need it to fix the code once you have

identified the bug. However, the difficult part is really

to identify the bug and to devise the way to remove it.

Indeed, there are a large number of researchers and

companies working on ‘‘program comprehension’’
and ‘‘reverse engineering’’, i.e., tools, techniques,

and methods to help derive from the code useful

high-level information to make it possible its evolu-

tion.

2. People keep complaining about the low reliability of

software systems. Weinberg�s statement above is a

typical example. However, these complaints are often

quite superficial. Certainly, software programs are far
from being perfect. However, there are some impor-

tant observations in this respect:

• Several years ago Fred Brooks described the na-

ture of software, pointing out its essential difficul-

ties. He observed that software, compared to other

artifacts, has a very high number of states, and it is

therefore extremely difficult to manage and control

it. Can we really compare software and houses, as
Weinberg does?

• The growth in complexity of software systems along

the past years is absolutely amazing. For instance,

twenty years ago there were no word processors,

spreadsheets, graphical tools, and multimedia au-

thoring systems. Nowadays, these tools are used

by millions of users worldwide. There has never

been another industrial sector that has experienced

the same successful growth (except for semiconduc-

tors). Would that be possible if the reliability of

these tools were ‘‘atrociously bad’’?

• Most modern and complex services and products
are run through software. For example, airplanes

and traffic control systems are run by very complex

and safety-critical software. Millions of lives are

everyday under the responsibilities of these sys-

tems. Still, the number of casualties or severe acci-

dents due to software problems is very low (if not

zero). On the contrary, how many lives are lost ev-

eryday for car accidents caused by defective tires
or mechanical problems? Similarly, worldwide fi-

nancial services rely on software. They provide

non-stop services to millions of users every single

day. Can we really say that the reliability of these

systems is low? On what basis?

We should have real scientific argument to judge

the reliability of software systems and to compare

it with the reliability of other goods.
3. Software inspections have been invented more than

20 years ago. Software engineers use them in many

different settings. For instance, AT&T performs a

huge number of inspections every year on the soft-

ware code running the telephone network. The novel

aspect found in open source development is that a po-

tentially larger number of users can check the code.

However, the principle is not new. Moreover, the
ability of seeing the code does not necessarily require

that the code be open source. It would be sufficient to

make it ‘‘accessible’’ to users.

Notice that I do not want by any means to claim that

software is perfect and that does not need to be improved.

Fig. 1. Cause-effect diagram.

84 A. Fuggetta / The Journal of Systems and Software 66 (2003) 77–90



I am simply stating that many claims about the low

reliability of software are not based on scientific evi-

dence and are in most cases misleading.

4.5. A final remark

In general, it is difficult to affirm that there is a causal

relationship between the software being open source and

its effectiveness, quality, and value. The success of

products such as Linux and Apache are due to a combi-

nation of effects and there is no evidence that these effects

could be obtained ‘‘iff’’ the software is open source. Fig. 1
illustrates in more detail the situation. Open source is a

factor that is supposed to enable some beneficial phe-

nomena (such as ‘‘software can be tested in a much more

effective way’’). In turn, these phenomena cause soft-

ware to be good. This cause-effect chain is not scientif-

ically proved. In particular, it is not proved that

phenomenon such as ‘‘software can be tested in a much

more effective way’’ can be enabled if and only if soft-
ware is open source. The discussion of the previous

paragraphs aimed at refuting this assertion.

Certainly, one may argue that open source acts as a

very good catalyst that enables the ‘‘reaction’’ through

which all these different factors are mixed together.

Moreover, the cultural mixing effect of bazaar projects

might have an impact on quality. This is certainly a

possibility that must be better studied and understood.

5. Economic/business aspects

The previous two sections of this paper have dis-

cussed ethical and technical issues related to open source

software. In this section, I want to discuss some issues

related to economic and business aspects. The starting
point of this analysis is Raymond�s second seminal

paper on open source, titled ‘‘The magic cauldron’’

(Raymond, 1999). Other relevant literature and sources

will also be cited and discussed.

5.1. Selling services vs. products

Raymond suggests that the evolution of the software

market will eventually lead to a situation where ‘‘we

require a price structure founded on service contracts,

subscriptions, and a continuous exchange of value be-

tween vendor and customer. [. . .] we can predict that this

is the sort of price structure most of a mature software
industry will ultimately follow.’’

Of course, there is nothing wrong in selling services.

The service-based business model is not new or unrea-

sonable. However, it is questionable to link the price

structure to the software being open source. Application

service providing is a business model based on selling

services and does not require code to be open source.

Therefore, the two issues (price structure and open source)

are fairly orthogonal.

In general, there might certainly be a shift from

buying licences for software to renting it. The critical

factor that will push customers to use either approach
will be the evaluation of the total cost of ownership.

Buying new versions of a software package is not nec-

essarily more expensive than paying a yearly subscrip-

tion to a maintenance service. The real difference is that

if the source code is open (or owned by the user), then it

is possible to change the company in charge of main-

taining it, as discussed in more detail later on.

5.2. Open source as a commercial weapon/strategy

Opening the source code of software has proved to be

a powerful commercial weapon/strategy. However, in
most cases the key issue is that open source software is

‘‘free’’ as in ‘‘free beer’’, not that the source code is open.

Let us consider some typical examples.

The browser war

Netscape has decided to open the source code of its

browser to counterbalance Microsoft move to distrib-
ute Explorer ‘‘for free’’ (as in ‘‘free beer’’). Actually,

the vast majority of end-users do not care about the

source code. They have been moving to Explorer be-

cause it is free, bundled with Windows, faster and

better than Netscape. Netscape decision to open the

source code has had two effects. The first one was

to make the Netscape browser ‘‘free’’ (as in ‘‘free

beer’’). This decision was by far the most relevant
one, as it addressed the key challenge posed by Ex-

plorer, i.e., cost. The second one is to reinforce the

role of the Netscape browser as the ‘‘open’’ alterna-

tive to Explorer, i.e., it was a ‘‘selling pitch’’ for a spe-

cific audience (people who ‘‘do not like’’ Microsoft).

For both companies, however, the browser is a com-

mercial weapon to contend a key market: server soft-

ware. The fact that Netscape is open source is
marginal. The real issue is that by keeping a large

share of the browser market, Netscape was able to

sustain its sales of enterprise software and services

(Cusumano and Yoffie, 1998).

Sun and Star Office

Sun is actively promoting Star Office. Star Office is
not considered a true open source software, but it is

free, at least partially open, and it is considered a

‘‘free’’ alternative to Microsoft Office. Indeed, this

is the point. Sun uses ‘‘free’’ software as a commercial

weapon to promote the diffusion of Sun worksta-

tions as an office automation alternative to the Wintel

A. Fuggetta / The Journal of Systems and Software 66 (2003) 77–90 85



platform. Sun revenues are from hardware, not soft-

ware. Sun investments and costs to distribute Star Of-

fice are marginal with respect to the revenues made

with hardware. Star Office is used to capture increas-

ing shares in the hardware market. In practice, the

key issue is again ‘‘free’’ as in ‘‘free beer’’, not open
source. Open source is an accidental factor in a much

broader war.

IBM, Sun, and Apache

IBM and Sun are actively supporting the develop-

ment of Apache. Apache is a very good product

and, being ‘‘free’’, it is a great option for many cus-
tomers. Of course, it needs to be supported. This cost

is sustained by the above mentioned companies

whose interest is very clear: by defending Apache,

they defend their hardware product lines. If Micro-

soft http server becomes the leader or the only player,

nobody would buy non-Intel servers anymore.

In general, open source is often used as a commercial
strategy/weapon. In most cases, the real ‘‘essential’’

factor is that open source software is ‘‘free’’ as in

‘‘free beer’’. In some situations, the investments in

software development are covered by companies

who are interested in protecting or approaching a

market. For other companies (see for instance the

Zope system cited in a previous section), open source

is a true market strategy. In general, open source de-
velopment is made possible by someone who decides

to invest as he/she anticipates revenues that are not

directly derived from selling licenses or source code.

This is legitimate, but there is no evidence that this

is a general, universal, or unique strategy for any soft-

ware-based business.

5.3. Who pays the cost of software development?

Software does cost and it costs a lot. Open source

software costs as well. The issue is therefore who is

going to pay for open source software development.

This observation is being considered very carefully even

by open source advocates (Shankland, 2001).

Two possible answers have been discussed in a pre-

vious section. First, open source development may be an
investment that pays off through selling services. Sec-

ond, open source software may be funded by someone

who is interested in protecting or opening a market.

Stallman provides some additional answers:

If we eliminate intellectual property as a means of

encouraging people to develop software, at first less

software will be developed, but that software will be
more useful.

[. . .]
The question, ‘‘How can we pay programmers?’’,

becomes an easier question when we realize that it is

not a matter of paying them a fortune. A mere living

is easier to raise.

[. . .]
Institutions that pay programmers do not have to be

software houses. Many other institutions already

exist which can do this.

Hardware manufacturers find it essential to support

software development even if they cannot control the

use of the software.

[. . .]
Universities conduct many programming projects.
Today, they often sell the results, but in the 1970s,

they did not. Is there any doubt that universities

would develop free software if they were not allowed

to sell software? These projects could be supported by

the same government contracts and grants which now

support proprietary software development.

[. . .]
Programmers writing free software can make their
living by selling services related to the software.

[. . .]
New institutions such as the Free Software

Foundation can also fund programmers.

[. . .]
The FSF is a charity, and its income is spent on hiring

as many programmers as possible. If it had been set

up as a business, distributing the same free software
to the public for the same fee, it would now provide a

very good living for its founder.

Because the Foundation is a charity, programmers

often work for the Foundation for half of what they

could make elsewhere. They do this because we are

free of bureaucracy, and because they feel satisfaction

in knowing that their work will not be obstructed

from use. Most of all, they do it because program-
ming is fun. In addition, volunteers have written

many useful programs for us. (Recently even techni-

cal writers have begun to volunteer.)

This confirms that programming is among the

most fascinating of all fields, along with music and

art. We do not have to fear that no one will want to

program.

The points made by Stallman are quite na€ııve. We

cannot postulate that all software systems are developed

just because ‘‘programming is fun’’. Nor can we imagine

that all programmers are happy to work for ‘‘a mere

living’’. Also, funding open source software develop-

ment through public money is not a viable general

strategy. Why software should be funded that way while

other products are not? Finally, Stallman seems to
overlook the amount of software that has to be devel-

oped and the related market size. According to the 2001

86 A. Fuggetta / The Journal of Systems and Software 66 (2003) 77–90



EITO Report, in recent years the European Software

market has been characterized by the trends and figures

illustrated in the charts of Fig. 2. In particular, as in-
dicated in the chart on the right, in Europe the cost of

implementing custom software (not considering all the

other related services) is expected to reach 34 billion

Euros in year 2001. Open source advocates would

probably argue that this huge amount of money is (at

least partially) used very badly, since similar software

systems are often implemented more than once; thus,

they would argue that these actual costs are much higher
than what it would be possible to achieve if a wiser

strategy is adopted. Also, there are large expenditures in

package licensing (see Fig. 2, left chart). Therefore, the

‘‘real and ideal’’ total funding needed to develop the

‘‘required’’ software may be much less than what we

spend today. Still, it is essential to note that there is no

evidence to support Stallman�s claim according to which

the approaches he proposes to funding are enough to
cover all of the ‘‘real’’ needs. Moreover, there might be

applications areas or domains where it is difficult or

unrealistic to use any of the approaches proposed by

Stallman. In general, Stallman�s proposals are not

harmful if they are considered possible options to ex-

plore; they may turn out to be quite critical and dan-

gerous if imposed by forcing all software to be open

source (as the Free Software Foundation advocates).
Nevertheless, there are particular market situations

where open source is probably the only viable solution

to support successful and effective software develop-

ment. Typical examples are research communities that

need specific software products to support their research

work. For instance, in Astrophysics there are a large

number of researchers developing open source software

to support research activities. In this case, the expertise
needed to develop this critical and specific kind of

software, the cost of developing it, and the limited

market base for the resulting products make it difficult

to exploit a traditional approach to software develop-

ment. Typically, in these situations software is cooper-

atively developed by a number of researchers worldwide.

They know and share requirements very effectively, and

are able to combine and integrate different software

components to build complex and sophisticated com-

putational systems. This is a situation where open
source software appears to be the only viable solu-

tion. In this case, the costs of software development

are supported by research institutions and are com-

bined to achieve a high degree of synergy and effec-

tiveness.

5.4. Open source and the protection of customers

There is an important issue that needs to be discussed

in detail: open source software is considered a way to

protect customers and, in particular, public adminis-

trations, government agencies, and institutions. Open

source software is considered particularly attractive

because it makes it possible to achieve the following

goals:

• Software can be inspected to check whether it is com-

pliant to security and safety requirements.

• Software maintenance can be managed in a much

more effective way, since a customer is free to change

the company maintaining the software.

I already noticed that the first point can be addressed

by simply forcing companies to make software code
visible to customers. This does not necessarily mean that

a software producer has to make his/her software free/

open. Furthermore, I claim that the real issue underly-

ing most open source advocates� concerns is not the

unavailability of source code: it is the quality and

structure of the procurement process used to purchase

software.

Customers usually purchase two kinds of software
products: packages and bespoke (or custom) software.

Packages (e.g., MS Office, Oracle, and SAP) are usually

purchased by acquiring licenses. In this case, it is indeed

impossible to change the company in charge of main-

taining the source code. However, most of the custom-

ers� real problems are related to bespoke software. A

typical example of bespoke software is the information

Fig. 2. Software packages market (left) and software-related services (right) in the EU (EITO, 2001).

A. Fuggetta / The Journal of Systems and Software 66 (2003) 77–90 87



system developed to automate specific processes in a

government office (e.g., driving license distribution). In

this kind of situations, the software system is developed

by a software company for that specific customer who

pays the entire cost of developing it. A wise and obvious

way of procuring this kind of software is based on the

acquisition of the ownership of the source code, since the

customer pays for its development. Unfortunately, in

most situations customers simply buy the executables.

This is the real source of the problem: if a customer pays

the price of bespoke software development without

acquiring the ownership of the source code, then, of

course, he/she will be unable to change the company

in charge of maintaining the system (or to accomplish
any activity that requires the availability of the source

code).

In this situation, the easiest and most obvious solu-

tion is to correct the procurement process. Customers do

have the ‘‘power’’ to impose this change: for instance, in

a public bid for software development activities, a public

administration can and should simply state as a con-

tractual clause that the ownership of the developed
software will be transferred to the customer at the end

of the project. This approach has been pursued by

Italian public administrations during the past decade.

When a public administration purchases (typically

through a public call) some bespoke software, it be-

comes owner of the software itself. This makes it

possible for the public administration to change the

software autonomously or to use maintenance services
offered by different companies. Moreover, in Italy there

is a law stating that a public body or agency who owns

the source code of a software system is allowed to re-

distribute it for free to any other public administration

that can customize it and adapt it to its own needs and

requirements (Gazzetta Ufficiale della Repubblica Itali-

ana, 2000). For instance, in Italy recently the Depart-

ment of Justice has installed a customized version of
some bespoke software originally acquired by the

Department of Treasury. This is a quite obvious con-

sequence of an effective procurement process, which

transfers to the customer (in this case, the government)

the property of the bespoke software being developed.

This approach to bespoke software procurement does

not require any discussion on software being open or

free. It achieves the same effect by exploiting well ac-
cepted and even obvious market rules:

• ‘‘If I pay for the development of some bespoke soft-

ware, then the source code is mine.’’

• ‘‘If the source code is mine, I can do whatever I want

with it.’’

Notice that bespoke software development consti-
tutes a very large portion of the software expenditures in

both private companies and public administrations.

Therefore, by improving the procurement process for

this kind of software we would be able to solve a very

large number of situations that are considered very

critical by free software advocates.

6. Conclusions

Open source software is an important phenomenon

that needs to deeply studied and understood. Unfortu-

nately, the discussion about open source software has
been carried out as a religious war by some, and simply

ignored by others. This paper is an attempt to provide a

critical and scientific (even if qualitative and prelimi-

nary) evaluation of the approach. The main conclusions

that I have drawn can be summarized as follows:

• Most claims associated to open source and the related

development process do apply also to proprietary
software.

• It is not proved that open source uniquely and neces-

sarily causes software to be better, more reliable, or

cheaper to develop.

• Many economic and business issues are not related to

software being ‘‘open’’ or ‘‘closed’’.

Still, open source software has some distinctive fea-
tures and characteristics that deserve to be studied and

understood so that we can exploit them to further in-

crease the quality of software and of software develop-

ment processes. I argue that these distinctive features

can be summarized as follows:

Motivation

The open source approach is certainly a very effective

and rewarding way to involve people in a software

development project. It may be considered a strong

‘‘catalyst’’ to promote effective development practices.

Commercial weapon to defeat competitors or to protect

a market

Open source is used as a commercial weapon to at-

tack competitors (e.g., as in the Star Office case). In

most cases, however, the real important factor is that

open source software is ‘‘free’’ (as in ‘‘free beer’’).

Commercial strategy to create a community of users

Some software developers are exploiting open source
to create a community of users (e.g., as in the Zope

case). Thus, open source is a commercial strategy to

acquire new market shares.

Closed group of users, specific markets where tradi-

tional business models do not work

88 A. Fuggetta / The Journal of Systems and Software 66 (2003) 77–90



Open source is a form of development that is success-

ful whenever there are restricted or limited communi-

ties of users where traditional market strategies do

not work. Of course, this requires the autonomous in-

vestment of the community or some other source of

funding (typically, the government).

Effective dissemination means

Open source is a very powerful means to disseminate

innovation and research results.

Of course, these conclusions are preliminary and

based on qualitative observations. It is indeed impor-
tant to further study these issues using empirical stud-

ies and other scientific research approaches in order

to deepen our knowledge of open source software.

This is essential to properly handle expectations (we

must know what open source can really deliver), to

exploit innovative and distinctive open source prac-

tices in the software industry, and, in perspective, to

increase the quality of the software products used in
our society (Rosenberg, 2000; Rubini).

Acknowledgement

This paper has been written while visiting at the

University of California, Irvine (Summer 2001).

Appendix A. Definitions related to open source

These are some basic definitions taken from (Free

Software Foundation):

Free software

Free software is software that comes with permis-

sion for anyone to use, copy, and distribute, either

verbatim or with modifications, either gratis or for

a fee. In particular, this means that source code

must be available. ‘‘If it is not source, it is not soft-

ware.’’

Open Source software

The term ‘‘open source’’ software is used by some

people to mean more or less the same thing as free

software.

Public domain software

Public domain software is software that is not copy-

righted. It is a special case of non-copylefted free

software, which means that some copies or modi-
fied versions may not be free at all.

Copylefted software

Copylefted software is free software whose distribu-

tion terms do not let redistributors add any addi-

tional restrictions when they redistribute or modify

the software. This means that every copy of the soft-
ware, even if it has been modified, must be free soft-

ware.

Non-copylefted free software

Non-copylefted free software comes from the au-

thor with permission to redistribute and modify,

and also to add additional restrictions to it.

If a program is free but not copylefted, then some

copies or modified versions may not be free at all. A

software company can compile the program, with or

without modifications, and distribute the executable

file as a proprietary software product.

GPL-covered software

The GNU GPL (General Public License) is one spe-

cific set of distribution terms for copylefting a pro-

gram. The GNU Project uses it as the distribution

terms for most GNU software.

Semi-free software

Semi-free software is software that is not free, but

comes with permission for individuals to use, copy,

distribute, and modify (including distribution of

modified versions) for non-profit purposes. PGP is

an example of a semi-free program.

Proprietary software

Proprietary software is software that is not free or
semi-free. Its use, redistribution or modification is

prohibited, or requires you to ask for permission,

or is restricted so much that you effectively cannot

do it freely.

Freeware

The term ‘‘freeware’’ has no clear accepted defini-
tion, but it is commonly used for packages which

permit redistribution but not modification (and

their source code is not available).

Shareware

Shareware is software that comes with permis-

sion for people to redistribute copies, but says that

A. Fuggetta / The Journal of Systems and Software 66 (2003) 77–90 89



anyone who continues to use a copy is required to

pay a license fee.

Commercial software

For the GNU Project, the emphasis is in the other

order: the important thing is that GNU Ada is free
software; whether it is commercial is not a crucial

question. However, the additional development of

GNU Ada that results from its being commercial

it is definitely beneficial.

Please help spread the awareness that commercial

free software is possible. You can do this by making

an effort not to say ‘‘commercial’’ when you mean
‘‘proprietary’’.

References

Aigrain, P., 2002. Positive intellectual rights and information ex-

changes. In: Century, M. (Ed.), CODE, MIT Press, in press.

Cusumano, M.A., Yoffie, D.B. 1998. Competing on the Internet Time.

Touchstone Book (Simon & Schuster).

Cusumano, M.A., Selby, R.W., 1995. Microsoft secrets. The Free

Press.

EITO 2001: European Information Technology Observatory 2001.

EITO, 2001.

Free Software Foundation (FSF). ‘‘The Free Software Definition’’.

Available from <http://www.gnu.org/philosophy/free-sw.html>.

Free Software Foundation (FSF). ‘‘Why �Free software� is better than

�Open Source�’’. Available from <http://www.gnu.org/philosophy/

free-software-for-freedom.html>.

Free Software Foundation (FSF). ‘‘Categories of Free and Non-Free

Software’’. Available from <http://www.gnu.org/philosophy/cate-

gories.html>.

Free Software Foundation (FSF). ‘‘Interview: Richard M. Stallman’’.

Available from <http://www.gnu.org/philosophy/luispo-rms-inter-

view.html>.

Free Software Foundation (FSF). ‘‘The GNU Manifesto’’. Available

from <http://www.gnu.org/gnu/manifesto.html>.

Free Software Foundation (FSF). ‘‘Free Software is More Reliable!’’

Available from <http://www.gnu.org/software/reliability.html>.

Free Software Foundation (FSF). ‘‘Selling Free Software’’. Available

from <http://www.gnu.org/philosophy/selling.html>.

Free Software Foundation (FSF). ‘‘Why Software Should Not Have

Owners’’. Available from <http://www.gnu.org/philosophy/why-

free.html>.

Free Software Foundation (FSF). ‘‘Why Software Should Be Free’’.

Available from <http://www.gnu.org/philosophy/shouldbefree.html>.

Free Software Foundation (FSF). ‘‘Some Confusing or Loaded Words

and Phrases that are Worth Avoiding’’. Available from <http://

www.gnu.org/philosophy/words-to-avoid.html>.

Gabriel, R.P., Joy, W.N., Sun Community Source License Principles’’.

Available from <http://www.sun.com/981208/scsl/principles.html>.

Gazzetta Ufficiale della Repubblica Italiana. ‘‘Disposizioni per la

delegificazione di norme e per la semplificazione di procedimenti

amministrativi––Legge di semplificazione 1999’’. Supplemento

ordinario alla ‘‘Gazzetta Ufficiale, n. 296 del 20 Dicembre 2000’’,

Serie Generale, Parte Prima.

Opensource.Org. ‘‘The Open Source Definition’’. Version 1.8. Avail-

able from <http://www.opensource.org/docs/definition.html>.

Opensource.Org. ‘‘Advocacy, Frequently Asked Questions’’. Available

from <http://www.opensource.org/advocacy/faq.html>.

Opensource.Org. ‘‘Advocacy, The Open Source Case for Business’’.

Available from <http://www.opensource.org/advocacy/case_for_

business.html>.

Opensource.Org. ‘‘Advocacy, The Open Source Case for Customers’’.

Available from <http://www.opensource.org/advocacy/case_for_

customers.html>.

Opensource.Org. ‘‘Advocacy, The Open Source Case for Hackers’’.

Available from <http://www.opensource.org/advocacy/case_for_

hackers.html>.

Opensource.Org. ‘‘Advocacy, Software Secrets: Do They Help or

Hurt?’’ Available from <http://www.opensource.org/advocacy/se-

crets.html>.

Raymond, E.S., 1999. ‘‘The Magic Cauldron’’. June 1999. Available

from <http://www.tuxedo.org/~esr/writings/magic-cauldron/>.

Raymond, E.S., ‘‘The Cathedral and the Bazar’’. 2000. Available from

<http://tuxedo.org/~esr/writings/cathedral-bazaar/>.

Rifkin, J., 2000. The age of access. Penguin Putnam.

Rosenberg, D.K., 2000. Open Source, The Unauthorized White

Papers. IDG Books Worldwide, Inc.

Rubini, A., ‘‘Software Libre and Commercial Viability’’. Free Software

Foundation (FSF). Available from <http://www.gnu. org/philoso-

phy/software-libre-commercial-viability.html>.

Shankland, S., 2001. ‘‘Is open source fading away?’’ ZDNet Tech

Update, November 20th, 2001. Available from <http://techup-

date.zdnet.com/techupdate/stories/main/0,14179,5099830,00.html>.

Alfonso Fuggetta is a full professor of Software Engineering at Po-
litecnico di Milano. He is also deputy director of CEFRIEL, a research
and education center established in 1988 by Politecnico di Milano,
University of Milano, the Regional Council of Lombardy and several
ICT companies.

Alfonso Fuggetta�s interests are in software process, distributed
architectures and internet-wide infrastructures, e-government, and
economic and organizational issues related to the adoption of ICT
systems and technologies.

Alfonso Fuggetta has been a visiting professor at the Norwegian
Institute of Science and Technology (Trondheim), at the University of
Colorado at Boulder (USA), and at the University of California, Irvine
(USA). He has been program co-chair of the 1997 edition of the In-
ternational Conference on Software Engineering (Boston, USA), and
is a member of the editorial boards of ACM Transactions on Software
Engineering and Methodology, Software process––Improvement and
Practice, and Automated Software Engineering.

90 A. Fuggetta / The Journal of Systems and Software 66 (2003) 77–90

http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-software-for-freedom.html
http://www.gnu.org/philosophy/free-software-for-freedom.html
http://www.gnu.org/philosophy/categories.html
http://www.gnu.org/philosophy/categories.html
http://www.gnu.org/philosophy/luispo-rms-interview.html
http://www.gnu.org/philosophy/luispo-rms-interview.html
http://www.gnu.org/gnu/manifesto.html
http://www.gnu.org/software/reliability.html
http://www.gnu.org/philosophy/selling.html
http://www.gnu.org/philosophy/why-free.html
http://www.gnu.org/philosophy/why-free.html
http://www.gnu.org/philosophy/shouldbefree.html
http://www.gnu.org/philosophy/words-to-avoid.html
http://www.gnu.org/philosophy/words-to-avoid.html
http://www.sun.com/981208/scsl/principles.html
http://www.opensource.org/docs/definition.html
http://www.opensource.org/advocacy/faq.html
http://www.opensource.org/advocacy/case_for_business.html
http://www.opensource.org/advocacy/case_for_business.html
http://www.opensource.org/advocacy/case_for_customers.html
http://www.opensource.org/advocacy/case_for_customers.html
http://www.opensource.org/advocacy/case_for_hackers.html
http://www.opensource.org/advocacy/case_for_hackers.html
http://www.opensource.org/advocacy/secrets.html
http://www.opensource.org/advocacy/secrets.html
http://www.tuxedo.org/~esr/writings/magic-cauldron/
http://tuxedo.org/~esr/writings/cathedral-bazaar/
http://www.gnu.org/philosophy/software-libre-commercial-viability.html
http://www.gnu.org/philosophy/software-libre-commercial-viability.html
http://techupdate.zdnet.com/techupdate/stories/main/0,14179,5099830,00.html
http://techupdate.zdnet.com/techupdate/stories/main/0,14179,5099830,00.html

	Open source software--an evaluation
	Introduction
	What is meant by ``open source''?
	Ethical and social aspects
	Technical aspects
	Open source as a new way to develop software (a new process)
	Open source, requirements, architecture, and distributed development
	Open source vs. open standards
	Open source software is more reliable
	A final remark

	Economic/business aspects
	Selling services vs. products
	Open source as a commercial weapon/strategy
	Who pays the cost of software development?
	Open source and the protection of customers

	Conclusions
	Acknowledgements
	Definitions related to open source
	References


